![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Продольные и поперечные волны |
РЕФЕРАТ на тему: &quo ; ПРОДОЛЬНЫЕ И ПОПЕРЕЧНЫЕ ВОЛНЫ&quo ; учениця 11 класу Мельник Анжела ПРОДОЛЬНЫЕ И ПОПЕРЕЧНЫЕ ВОЛНЫ В физике мы имеем дело с волнами различной природы: механическими, электромагнитными и т.д. Несмотря на отличия, эти волны имеют много общих черт. Волны, рассматриваемый параметр которых (смещение молекул, механическое напряжение, и т.д.) изменяется периодически вдоль оси распространения, называются продольными волнами. Если колебания происходят перпендикулярно оси распространения волны (как у электромагнитных волн, например), то такие волны называются поперечными. Если взаимосвязь между частицами среды осуществляется силами упругости, возникающими вследствие деформации среды при передаче колебаний от одних частиц к другим, то волны называются упругими. К ним относятся звуковые, ультразвуковые, сейсмические и др. волны. На первой анимации изображён процесс распространения продольной упругой волны в решётке, состоящей из шариков, соединённых упругими пружинками. Каждый шарик колеблется по гармоническому закону в продольном направлении, совпадающем с направлением распространения волны. Амплитуда каждого шарика одинакова и равна A, а фаза колебаний линейно растёт с увеличением номера шарика на т.е x0=Asi ( ); x1=Asi ( ); x2=Asi ( 2); x3=Asi ( 3); и т.д. где -частота волны, - время, - изменение фазы от шарика к шарику В поперечной волне колебания происходят в направлении, перпендикулярном направлению распространения волны. Как и в случае продольных волн амплитуды колебаний всех шариков одинаковы, а фаза линейно изменяется от шарика к шарику y0=Bsi ( ); y1=Bsi ( ); y2=Bsi ( 2); y3=Bsi ( 3); и т.д. В общем виде уравнение распространения волны может быть записано в виде: z = z - координата, по которой происходит движение частиц, x - координата оси, вдоль которой распространяется волна, k - волновое число, равное / v, v - скорость распространения волны. Зная частоту волны и скорость её распространения, мы можем найти сдвиг фаз между соседними шариками (частицами): / v)a, где a - расстояние между шариками в решётке. На следующей анимации изображено наложение продольной и поперечной волн равной амплитуды, сдвинутых по фазе на 90 градусов. В результате каждая масса совершает круговые движения. Уравнение движения каждого шарика может быть описано уравнением: x=Acos( ); y=Asi ( ) У волн, наблюдаемых на поверхности жидкости, так называемых поверхностных волн, взаимосвязь между соседними элементами поверхности жидкости при передаче колебаний осуществляется не силами упругости, а силами поверхностного натяжения и тяжести. Колебания масс в сетке моделируют движение молекул в волне на поверхности жидкости. В случае малой амплитуды волны каждая масса движется по окружности, радиус которой убывает с расстоянием от поверхности. Массы внизу сетки находятся в покое.В
олны на поверхности жидкости не являются ни продольными, ни поперечными. Как мы можем видеть на анимации, красный шарик, моделирующий молекулу поверхности жидкости, движется по круговой траектории. Таким образом, волна на поверхности жидкости представляет собой суперпозицию продольного и поперечного движения молекул. ИНТЕРФЕРЕНЦИЯ И ДИФРАКЦИЯ ВОЛН НА ПОВЕРХНОСТИ ЖИДКОСТИ Интерференция двух линейных волн Рассмотрим волну, возникающую на поверхности жидкости под воздействием колебаний длинного цилиндрического стержня: z = Acos( где A - амплитуда колебаний цилиндра, = 2f, f - частота колебаний, - время. Если волна распространяется без затухания, то любая точка поверхности жидкости будет колебаться с той же амплитудой, что и стержень, но фаза колебаний будет изменяться пропорционально расстоянию от него: z = Acos( kx где k = / v, v - скорость распространения волны. В общем случае, волна будет затухать из-за внутреннего трения жидкости и амплитуда колебаний A будет уменьшаться с расстоянием. Далее рассмотрим случай интерференции волн от двух стержней, вибрирующих с одинаковой частотой. Предположим, что расстояние между стержнями - d. Амплитуда колебаний поверхности жидкости в любой точке с координатой x может быть найдена как сумма двух волн: z = Acos( - kx) Acos( k(x - d)) Волновое число k входит в вышеуказанную формулу с разными знаками, что соответствует противоположному направлению распространению волн от двух стержней. Эта формула может быть также переписана в виде: z = 2Acos( - kd/2)cos(kx - kd/2) Полученное выражение описывает интерференцию двух линейных волн, распространяющихся в противоположных направлениях (стоячая волна). Мы можем видеть из этого выражения, что существуют точки на поверхности жидкости, где волны интерферируют в противофазе и колебания в этих точках отсутствуют (так называемые узлы), и имеются точки, где волны накладываются, усиливая друг друга, и в этих точках колебания происходят с удвоенной амплитудой 2A (пучности). Узлы возникают в точках, для которых верно равенство cos(kx - kd/2)=0, то есть в точках x= /2 (1/2 ) d/2, где - целое число, а - длина волны. Это означает, расстояние между соседними узлами равно половине длины волны. То же самое утверждение справедливо и для расстояния между максимумами интерференционной картины. Так пучности появляются в точках для которых cos(kx - kd/2) равняется 1 или -1, то есть в точках x= /2 d/2. Зная частоту колебаний стержней и измеряя расстояние между узлами или пучностями (при помощи, например, микроскопа), мы можем найти скорость распространения волн на поверхности жидкости и затем, зная эти данные, мы можем вычислить многие важные параметры среды, в которой распространяется волна. Анимация показывает интерференцию двух волн на поверхности жидкости, возбуждаемых вибрирующими стержнями. Волны распространяются в противоположных направлениях и интерферируют с образованием стоячей волны. Красный шарик расположен в пучности стоячей волны и колеблется с максимальной амплитудой.
Параллелепипед расположен в узле интерференционной картины и амплитуда его колебаний равна нулю (он совершает лишь вращательные движения, следуя наклону волны). Круговые волны на поверхности жидкости Наблюдение волн на поверхности жидкости позволяет изучить и визуально представить многие волновые явления, общие для разных типов волн: интерференцию, дифракцию, отражение волн и т.д. Рассмотрим круговую волну на поверхности жидкости, создаваемую точечным источником, в качестве которого мы возьмём маленький шарик на поверхности жидкости, колеблющейся в вертикальном направлении с малой амплитудой. Так как шарик имеет конечные размеры, то каждая его точка, соприкасающаяся с жидкостью, является, по существу, точечным источником волн, наложение которых и даёт действительную волну. Однако на расстоянии, много большем диаметра шарика, этим можно пренебречь и образующиеся волны рассматривать как круговые, т.е. состоящий из концентрических окружностей. При этом сам шарик принимают за точечный источник волн. Отметим, что плоскую волну всегда можно представить как сферическую, но с бесконечно большим радиусом, т.е. считать центр плоской волны находящимся в бесконечности. Интерференция волн от двух точечных источников Рассмотрим теперь два маленьких шарика, колеблющихся на поверхности жидкости. Каждый из шариков возбуждает волну. Налагаясь, эти волны дают интерференционную картину, показанную на анимации. Рассмотрим уравнение, описывающее интерференционную картину. Если пренебречь затуханием, то волна от каждого шарика может быть записана следующим образом: s1=A1cos( - kr1); s2=A2cos( - kr2); где A1 и A2 - амплитуды волн, r1 и r2 - расстояния соответственно от первого и второго шарика, k = / v, v - скорость распространения волн. Так как разность = r2 - r1 много меньше, чем каждое из расстояний r1 и r2, мы можем положить A = A1 = A2. В этом приближении наложение волн s1 и s2 описывается следующим выражением: s = s1 s2 = 2Acos cos Из этого выражения видно, что в точках, для которых r2 - r1 = (1/2 ) , поверхность жидкости не колеблется. Эти узловые точки (линии) отчётливо видны на анимации. Интерференция круговой волны в жидкости с её отражением от стенки Рассмотрим точечный источник волн на поверхности жидкости (колеблющийся шарик) и полностью отражающую стенку, установленную в на некотором расстоянии от него. Если расстояние от источника до стенки кратно целому числу полуволн, то исходная круговая волна будет интерферировать с волной, отражённой от стенки, создавая в волновой ванне интерференционную картину, как показано на анимации. Согласно принципу Гюйгенса, отражённая волна совпадает с той, которая бы возбуждалась фиктивным точечным источником, расположенным по другую сторону стенки симметрично реальному источнику круговых волн. При этом если расстояние от источника до стенки кратно целому числу полуволн, то справа от источника на оси соединяющей фиктивный и реальный источник разность фаз будет кратна целому числу волн и круговая волна накладывается в фазе с волной, отражённой от стенки, увеличивая высоту гребней в интерференционной картине.Н
Расчеты показывают, что если катастрофа происходит на глубине 2,5 километра, ударная струя воды вылетит вверх на 200 метров. Это в теории. А на практике? А на практике Е. Барковский в «Морском сборнике» за 2001 год приводит следующий рассказ очевидца: «Шли в Индийском океане из Одессы в Сингапур. Погода была нормальная, почти штилевая. Вдруг штурвальный сыграл полундру. Выбежав на палубу, мы увидели, как впереди, прямо по курсу в нескольких километрах вздыбился океан. Образовался высоченный столб воды, а вокруг волны выше парохода!.. Капитан дал команду изменить курс и обойти опасное место» Автор концепции полагает, что не этот «фонтан» и не вызванные им волны «выше парохода» несут главную опасность, а разбегающаяся в придонном слое со скоростью звука продольная волна высокого давления Раньше считалось, что цунами нормальная поперечная волна с небольшой амплитудой и огромной до 100 километров длиной волны (напомню, что длиной волны называется расстояние между гребнями соседних волн.) Теперь выдвигается иная идея: главное в цунами не поперечная поверхностная волна, а именно продольная волна повышенного давления, летящая к берегу в придонном слое
1. Расчёт комплекса из двух ректификационных колонн
2. Расчёт поперечно-строгального станка
3. Исследование явления дисперсии электромагнитных волн в диэлектриках
4. О двух картинах вьетнамского художника по имени Май Лонг
5. Продольные электромагнитные волны
9. Продольные электромагнитные волны
10. Расчёт статистических и вероятностных показателей безопасности полётов
13. Исследование природных ресурсов планеты с помощью космических методов
14. Исследование клеточного цикла методом проточной цитометрии
15. Методологическое значение сравнительного метода в зоологических исследованиях
16. Разведение и содержание аквариумных рыб с элементами исследования
17. Исследования режима защиты рабочих и служащих химического завода в условиях радиоактивного заражения
19. Некоторые проблемы современных гидрологических исследований на Алтае
20. Исследование удовлетворенности потребителя
21. Математические методы и модели в конституционно-правовом исследовании
25. Из двух друзей всегда один раб другого (Лермонтов "Герой Нашего времени")
26. Особенности изображения двух миров в поэме А. Блока "Двенадцать"
27. Петербург в творчестве поэтов-эмигрантов первой волны
28. Описание картины В.М. Васнецова «Богатыри»
30. Картина мира, показанная в младшей Эдде
31. Союзники и противники двух мировых войн
33. Методы компьютерной обработки статистических данных. Проверка однородности двух выборок
35. Разработка и исследование подсистемы учебно-исследовательской САПР РЭА
36. Исследование уровня безопасности операционной системы Linux
37. Исследования устойчивости и качества процессов управления линейных стационарных САУ
41. Уравнение Кортевега - де Фриса, солитон, уединенная волна
42. Представление чисел в виде суммы двух квадратов и ...
43. Исследование элементарных функций
44. Расчёт статистических и вероятностных показателей безопасности полётов
45. Хронический панкреатит: этиология, патогенез, клиническая картина, принципы лечения
46. Лучевая диагностика. Магнитно-ядерный резонанс при исследовании спинного мозга
47. Взятие материала для лабораторного исследования на грибок
48. Влияние эмоциональных отклонений на внутреннюю картину болезни (на примере онкологических больных)
49. Криминалистическое исследование пломб и закруток
50. Криминалистическое исследование огнестрельных повреждений
52. Криминологическое исследование наследственности преступника
53. Статистика в криминологических исследованиях
58. Методы поиска и исследований в преподавании физики
59. Германия - инициатор двух мировых войн. Причины и последствия
60. Геометрические характеристики поперечных сечений
61. Создание и исследование шпаклевочных паст на основе УПС и АВС
62. Кинематический и силовой расчёт привода
63. Гидравлический расчёт узла гидротехнических сооружений
65. Тепловой расчёт турбины ПТ-25-90/11
66. Конструкционный анализ круглопильных станков для продольной распиловки бревен
67. Расчёт мощности судовой электростанции
68. Продольный магнитооптический эффект Фарадея
73. Расчёт балки (с шарниром) на прочность
74. Расчёт статически неопределимой рамы
75. Расчёт статически неопределимой балки
76. Определение нейтральной линии бруса и расчёт наибольших растягивающих и сжимающих напряжений
78. Расчёт балки один раз неопределимой (с врезанным подвижным шарниром)
80. Практические расчёты посадок, размерных цепей, калибров в машиностроении
81. Расчёты металлорежущих инструментов
82. Расчёт и проектирование установки для получения жидкого кислорода
83. Проектирование и исследование механизмов двигателя внутреннего сгорания
84. Исследование удовлетворенности потребителя
85. Психоаналитическое исследование Э.Фромма в работе "Бегство от свободы"
89. Любовь как эмоция и ее исследования в психологии
90. Исследование основных факторов влияния на распространения наркотиков среди подростков
92. Психодиагностика. Методы исследования
93. Исследование психологических характеристик спортсменов (на материалах исследования культуристов)
94. Исследование факторов эмоционального выгорания педагогов
95. Влияние эмоциональных отклонений на внутреннюю картину болезни (на примере онкологических больных)