![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Многолетние биологические ритмы в жизни животных и человека |
Генетика и развитие циркадианных ритмов беспозвоночных Созревание колебателя и наблюдаемых ритмов Настоящая глава охватывает процесс созревания в ходе онтогенеза и генетику ведущего осциллятора и наблюдаемых (ведомых) ритмов у беспозвоночных. Обсуждение в основном ограничено многоклеточными организмами, кроме тех случаев, когда представляется важным сопоставление с низшими организмами. Термины «колебатель» и «осциллятор» обычно будут употреблять в единственном числе, хотя действительный физиологический колебатель может состоять из многих компонентов или, по меньшей мере, может быть представлен двумя симметричными центрами в разных полушариях мозга. Суточные ритмы, наблюдаемые только при чередовании света и темноты, а в постоянных условиях затухающие, не обсуждаются. При исследовании онтогенетического развития циркадианных ритмов возникает важный вопрос: может ли какая-либо информация о ритмах передаваться потомкам через яйцо? Иными словами, существует ли какое-то кодированное сообщение о фазе или периоде колебаний, переходящее от поколения к поколению? Мутации, изменяющие свободнотекущий период, действительно встречаются. Из этого следует, что информация о длине периода может быть закодирована в ДНК и затем воспроизведена в следующем поколении. Каких-либо других данных по этому вопросу очень мало. Одно чрезвычайно интересное сообщение касается плодовой мушки, у которой фаза ритма куколочной линьки будто бы может передаваться потомству от матери. Правда, эти сведенья до сих пор остаются неподтвержденным. Такая передача фазы могла бы означать, что, либо в яйце продолжаются колебания, фаза которых установлена матерью, либо информация о фазе сохраняется во время отсутствия колебаний в закодированной форме. Подобное кодирование фазы, возможно, происходит у пчел, поскольку было показано, что заученное время кормления (т.е. определенная точка (циркадианного цикла) может быть передано необученной пчеле путем пересадки замороженной ткани мозга пчелы-донора. Другой важный вопрос касается взаимоотношения между появлением наблюдаемого ритма и созреванием осциллятора, который его контролирует. Например, у дрозофилы момент выхода взрослой особи из куколки ограничен «воротами», контролируемыми циркадианными осциллятором. Ступенчатый переход от света к темноте на стадии личинки, а также импульсы света или изменения температуры на стадии куколки способны определить фазу ритма выведения. Информация о фазе в принципе могла бы запасаться в какой-то «свернутой» форме на стадии личинки и куколки, а проявляется лишь после созревания циркадианных колебателей; или же на этих стадиях могли бы происходить скрытые колебания, проявление которых в виде наблюдаемых ритмов отсрочено до взрослой стадии. На самом деле имеет место второй вариант, что было показано в изящных экспериментах с измерением кривой смещения фазы (КСФ) при воздействии вспышек света через регулярные промежутки времени на стадии куколки. В каждый из пяти дней существования куколки были получены сходные КСФ, откуда следует, что в это время действительно продолжались циркадианные колебания.
Циркадианные осцилляторы способны ограничивать «воротами» определенные этапы индивидуального развития. Например, у Drpsophila pseudoobscura время окукливания, момент появления желтой окраски глаз и окрашивания глазковой щетинки не зависит от циркадианного осциллятора, хотя его колебания в это время происходят. Между тем момент выхода куколки находится под циркадианным контролем. Так же обстоит дело у D.me La ogas er. Это можно объяснить с помощью механизма сцепления: фактор, которому предстоит связать ведущий осциллятор с определенными событиями индивидуального развития, сам созревает лишь на стадии поздней куколки. Совершенно иная картина наблюдается у D. Vic oria. Здесь окукливание так же ритмично, как и выход из куколки, хотя все промежуточные события на стадии куколки, включая выворачивание головы, появление желтого пигмента глаза и окрашивание глазковых щетинок, аритмичны. Таким образом, у D. Vic oria действует два независимых осциллятора или же один осциллятор, но с двумя разными механизмами сцепления. У бабочки Pec i ophora эмбриональный период достаточно продолжителен(10-13 дней при 20С), чтобы можно было исследовать созревание осциллятора, контролирующего ритм вылупления из яйца. Минис и Питтендрих показали, что импульсные и ступенчатые воздействия светом и изменения температуры способны синхронизировать ритмы вылупления в популяции яиц, не ранее, чем на 6-й день эмбрионального развития. Таким образом, на этом этапе информация из внешней среды может быть усвоена, с тем, чтобы проявиться спустя несколько дней, после выхода гусениц из яиц. Вероятно, на 6-й день эмбрионального развития начинает действовать осциллятор, контролирующий вылупление. У насекомых претерпевающих полный метаморфоз, большой интерес представляют взаимоотношения осцилляторов, контролирующих циркадианные ритмы на разных стадиях развития. Этому вопросу есть данные о четырех организмах. У бабочек–сатурний часы, контролирующие ритм линьки, выдают гормональный сигнал, тогда как контроль ритма полетной активности осуществляется с помощью электрических сигналов, поскольку для сохранения ритма необходим интактный проводящий путь от мозга до грудных ганглиев. Таким образом, эти два ритма либо задаются разными осцилляторами, либо одним осциллятором, но с участием разных механизмов сцепления. У бабочек Pec i ophora исследованы ритмы вылупления из яиц, линьки и яйцекладки. При изучении регуляции циркадианных ритмов необходимо различать наблюдаемые ритмы, с одной стороны, и контролирующие их колебатели – с другой. Один и тот же колебатель может быть сцеплен с различными ритмами по-разному (либо посредством вынужденных колебаний, либо через колебательные механизмы), что приводит к многообразию наблюдаемых фаз и профилей ритмов. Pec i ophora при СТ 14:10 обычно откладывает яйца в темноте, а выход гусениц и имаго происходит в светлое время суток, причем пик для второго из этих процессов на 3ч позже, чем для первого. Таким образом, каждый ритм имеет свою особую фазу относительно циклов освещенности. Эти ритмы в разной мере поддаются направленному отбору на более раннюю и более позднюю фазы.
Последовательный искусственный отбор проводился в отношении ритма выхода имаго, и именно по этому признаку были получены наибольшие различия между «ранней» и «поздней» линиями. Ритм вылупления из яиц тоже может заметно сдвинуться по фазе, в то время как фаза ритма яйцеклетки остается у всех линий одинаковой. Результаты отбора можно интерпретировать либо как наследственное изменение свойств колебателя, либо как изменения «выходных» механизмов – может быть, механизма сцепления колебателя с подневольными наблюдаемыми ритмами. Поскольку КСФ у ранней и поздней мутантных линий не измерялись, ни одному из этих вариантов пока нельзя отдать предпочтение. Аналогичным образом, все три ритма с их различными фазами могут различаться не ведущими осцилляторами, а лишь связующими и «выходными» механизмами. Одно наблюдение, однако, можно истолковать в пользу различия самих осцилляторов: свободнотекущий период ритма выхода из яиц близок к 24ч, тогда как периоды двух других ритмов составляют 22,5ч. Правда, это различие периодов может быть обусловлено тем, что один и тот же осциллятор на постэмбриональных стадиях развития укорачивает свой период в результате созревания входных сенсорных путей или дополнительных клеток-часов. У Drosophila mela ogas er найдены мутации, затрагивающие периодичность выхода из куколок и подвижности взрослых особей. Эти мутации действуют на оба ритма сходным образом. Еще одна мутация, недавно выявленная в отдельном локусе, удлиняет период обоих ритмов на 1,5 ч. Кроме того, оба ритма могут захватываться на стадиях личинки и куколки, и КСФ колебателя дикого типа для обоих ритмов близки по форме и амплитуде. Эти результаты, как и данные о Pec i ophore, позволяют предположить, что оба ритма контролируются сходными, если не тождественными осцилляторами. Мультигенный анализ Нейман изучал у комара Clu io, обитающего в приливной зоне, различия между природными популяциями по времени выведенного имаго. Линии, выделенные в разных местах европейского побережья, различаются по этому признаку, так как они приспособлены к местным особенностям приливов и отливов. После скрещиваний двух линий с разным временем выхода имаго первое поколение потомков выводилось в какое-то промежуточное время. Возвратное скрещивание первого поколения с одной из родительских линий тоже давало промежуточное время. Таким образом, время выхода взрослой формы у Clu io контролируется продуктами одного или нескольких генных локусов. У гетерозигот это время выхода зависит от средней активности продуктов всех локусов, а не от простого сложения их эффектов, так как в последнем случае получился бы двухвершинный ритм с пиками, соответствующими временами выхода имаго у двух родительских форм. Ренсинг и др. исследовали межлинейное различия в суточном профиле потребления кислорода у Drosophila mela ogas er. В результате сравнения линий с разными соотношениями числа Х-хромосом и аутосом был сделан вывод, что Х-хромосома существенно влияет на положение вечернего максимума потребления кислорода при режиме СТ 12:12. У дрозофилы и бабочки пектинофоры путем отбора можно получить линии с ранним и поздним временем выведения.
Эндогенная тепловая СК-терапия применяется в сочетании с лекарственной и иной терапией, а иногда самостоятельно. Длительность одного сеанса 4050 минут. Курс лечения 3060 сеансов ежедневно, вечером, перед сном или вечерней прогулкой. Увеличив глубину СК, эндогенную тепловую СК-терапию можно применять бесконтактно, причем эффект может возрастать вплоть до сильного ожога. На этом принципе построена психирургия. А теперь несколько слов о бесконтактном массаже. В бесконтактной СК-терапии выделяют следующие методы: 1.PБиологическая СК-терапия это древнеегипетский информационный метод воздействия на организм человека естественным комплексом физических полей и излучений, биологических объектов: растений, животных, человека и др. В частности, когда в качестве лекарства использовали физические поля и излучения мозга и рук другого человека, то такая техника выглядела в виде пассов специальных движений рук и специальных лечебных внушений (заклинаний). В настоящее время существуют и различные медицинские аппараты с излучениями, имитирующими излучения человеческих рук по принципам бионики
1. Культура, её значение в жизни человека и общества
2. Экологические факторы риска, влияющие на здоровье и продолжительность жизни человека
3. Воображение: понятие и значение в жизни человека
4. Роль общения в жизни человека
5. Виды и роль эмоций в жизни человека
10. Роль микроэлементов в жизни человека
11. Феномен игры: ее место и роль в культурной жизни человека и культура ее бытия
12. Роль воображения в жизни человека
13. Деятельность и общение как способы социальной жизни человека
14. Самосознание в психической организации жизни человека
15. Нестандартная эротика в жизни человека и общества
16. Зигмунд Фрейд о роли бессознательного в жизни человека
18. Насекомые в жизни человека
19. Роль искусства в жизни человека
20. Лейтмотивная структура пьесы Л.Андреева «Жизнь Человека»
21. Мораль в жизни человека и общества
25. Роль языка в жизни человека
26. Роль информационных ресурсов в жизни человека
28. Инстинкт и его роль в жизни человека
29. Роль психомоторики в жизни человека
30. Роль эмоций в жизни человека
31. Смысл жизни человека по Франклу
32. Стресс и дистресс в жизни человека
33. Эмоции и их роль в жизни человека
34. Ценности и их роль в жизни человека
35. Нравственные начала жизни человека и общества в античной философии
36. Отличие эмоций человека от эмоций животного
41. Биологические ритмы меди в растениях
42. Биологические периоды в жизни птиц
44. Вредные факторы, влияющие на здоровье человека. Здоровый образ жизни
45. Проблема смысла жизни, смерти и бессмертия человека
46. Значение знаний о наследственности человека. Приобщение его к здоровому образу жизни
47. Человек в малой группе. Нормы поведения. Личная жизнь
48. Экология человека - путь к спасению жизни на Земле
49. Свет и его роль в жизни растений и животных
50. Биологические предпосылки и структурные уровни жизни
51. Оппозиция рока (власти звёзд) и свободной воли человека в пьесе Кальдерона "Жизнь есть сон"
53. Ценностные ориентации и самоактуализация человека в различные периоды жизни
57. Есть ли жизнь во вселенной
60. Поиск внеземных форм жизни
61. Абиогинез. Возникновение жизни на Земле
62. Жизнь и творчество Ч. Дарвина
63. Третичный период развития жизни на земле
64. О роли эксперимента в разработке научных гипотез происхождения жизни
65. Жизнь и творческий путь И.В. Вернадского
66. Основные проблемы генетики и механизм воспроизводства жизни
67. Поиск внеземных форм жизни
69. Развитие жизни на Земле в протейскую эру
73. Жизнь и творчество Шекспира
74. Жизнь и творчество Карла Павловича Брюллова
75. Роль Саскии в жизни Рембрандта
76. Жизнь и творческий путь Суйменкула Чокморова
77. Жизнь и творчество художника И. И. Шишкина
78. Жизнь и творчество Франсиско Гойи
79. Утесов и Райкин - жизнь и творчество
80. Хозяйственная жизнь древнерусского города
81. Сексуальные жизнь времен Древних цивилизаций
82. Жизнь и творчество Шолохова М.А.
83. Жизнь и творчество А.С. Пушкина
84. Художественный мир в романе Виктора Пелевина "Жизнь насекомых"
85. Жизнь и творчество Адама Мицкевича
89. География в жизни и творчестве А.С. Пушкина
90. Жизнь и быт Афин по комедиям Аристофана
91. Жизнь и творческий путь Д.Д.Бурлюка
92. Жизнь и творчество Джека Лондона
93. Жизнь и творчество П.И.Мельникова-Печерского
94. Життя та діяльність І.П.Котляревського (Жизнь и деятельность Ивана Петровича Котляревского)
95. Петербург - Петроград. Литературная жизнь города
96. Жизнь и творчество Марины Цветаевой