![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Компьютеры, Программирование
Компьютерные сети
Логические элементы интегральных микросхем |
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ КАФЕДРА РЭС РЕФЕРАТ НА ТЕМУ: «Логические элементы интегральных микросхем» МИНСК, 2009 Наиболее распространены ЛЭ и схемы потенциального типа. Среди существующих логических элементов (потенциальные, импульсные, импульсно-потенциальные) потенциальные ЛЭ и схемы представляют наиболее распространенный класс. Основным отличительным признаком ЛЭ и схем потенциального типа от импульсных и импульсно-потенциальных является наличие связи по постоянному току между их входами и выходами. Другим отличительным признаком является то, что они могут управляться и управлять другими схемами с помощью сигналов как ограниченной (импульсные сигналы), так и не ограниченной (потенциальные сигналы) длительности. В общем случае не исключается возможность применения в таких схемах реактивных компонентов, т.е. индуктивностей и емкостей. Последние, как правило, играют вспомогательную роль. Однако именно принципиальная возможность построения ИМС различной сложности без реактивных компонентов выгодно отличает этот класс устройств от остальных, поскольку процесс их изготовления наилучшим образом соответствует возможностям микроэлектронной технологии. Непрерывно возрастает степень интеграции ИМС потенциального типа и сложность выполняемых ими функций. Схемотехническая реализация ИМС потенциального типа осуществляется на основе ряда типовых, базовых функциональных элементов. Система параметров К параметрам, характеризующим логические и схемотехнические возможности ЛЭ микросхем и больших интегральных схем (БИС), относятся: реализуемая логическая функция; нагрузочная способность , характеризующая возможность подключения определенного числа идентичных ЛЭ (коэффициент разветвления по выходу); коэффициент объединения по выходу m (mи — для реализации логической функции И; mили — для реализации логической функции ИЛИ) (коэффициент объединения по входу); средняя задержка передачи сигнала τср (полусумма времени задержек передачи сигналов 1 и 0 со входа ЛЭ на его выход); предельная рабочая частота fр (частота переключения триггера, составленного из рассматриваемых ЛЭ); помехоустойчивость; потребляемая мощность. По виду реализуемой логической функции ЛЭ условно могут быть разбиты на два класса. К первому классу относятся функциональные элементы одноступенчатой логики. Это простейшие ЛЭ, реализующие функции И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ. Ко второму классу относятся функциональные элементы двухступенчатой логики, реализующие более сложные функции: И-ИЛИ, ИЛИ-И, НЕ-И-ИЛИ, И-ИЛИ-НЕ, И-ИЛИ-И и др. Нагрузочная способность ЛЭ определяет число входов идентичных элементов, которое может быть подключено к выходу каждого из них. При этом обеспечиваются неискаженная передача двоичных символов 0 и 1 в цифровом устройстве по цепи из произвольного числа последовательно включенных элементов при наихудших сочетаниях дестабилизирующих факторов. Дестабилизирующими факторами могут быть: изменение питающих напряжений, разброс параметров компонентов, изменение температуры и т.п. Часто нагрузочная способность называется коэффициентом разветвления по выходу (Краз) и выражается целым положительным числом ( =4, 5, 7, 10 и т.
д.). Чем выше нагрузочная способность ЛЭ, тем шире их логические возможности и тем меньше затраты при проектировании и построении цифрового устройства. Однако увеличение параметра возможно до определенных пределов, поскольку при этом ухудшаются другие параметры ЛЭ: снижается быстродействие, ухудшается помехоустойчивость и увеличивается потребляемая мощность. Обычно в состав одной серии ИМС часто входят ЛЭ с различной нагрузочной способностью: основные ЛЭ с =4 10 и буферные элементы — так называемые усилители мощности с =20 50. Это позволяет более гибко проектировать цифровые устройства, достигая оптимальных показателей по потребляемой мощности и числу ЛЭ. В зависимости от частотного диапазона работы логических МДП-микросхем (металл-диэлектрик-полупроводник) их нагрузочная способность может изменяться в широких пределах ( =10 100). Коэффициент объединения по входу m (Коб) характеризует максимальное число логических входов функционального элемента. С увеличением параметра m расширяются логические возможности микросхемы за счет выполнения функций с большим числом аргументов на одном типовом элементе И-НЕ, ИЛИ-НЕ и т. п. Однако при увеличении числа входов, как правило, ухудшаются другие параметры функционального элемента, такие как быстродействие, помехоустойчивость и нагрузочная способность. С точки зрения возможности увеличения коэффициента объединения по входу И или по входу ИЛИ логические схемы существенно отличаются друг от друга. Например, в ИМС где функция первой логической ступени выполняется на диодах или эмиттерных переходах многоэмиттерного транзистора, увеличение числа входов не требует существенных дополнительных затрат площади кристалла. В ИМС, где функция первой логической ступени выполняется на транзисторах, увеличение параметра m требует значительного увеличения числа компонентов ЛЭ и роста площади кристалла ИМС. В существующих сериях интегральных микросхем основные логические элементы выполняются, как правило, с небольшим числом входов . Увеличение числа входов m обеспечивается за счет введения в серию ЛЭ специального расширителя, подключение которого к основной ИМС дает возможность увеличить mили и mи до 10 и более. К основным динамическим параметрам логического элемента относятся: ф1 — фронт формирования уровня логической 1; ф0 — фронт формирования уровня логического 0; τ10 — задержка переключения из состояния 1 в состояние 0; τ01 — задержка переключения из состояния 0 в состояние 1; — длительность импульса; fp — рабочая частота. Определение этих параметров обеспечивается при сравнении сигналов на входе и выходе ЛЭ, т.е. при рассмотрении процесса передачи информации через ЛЭ. На рис. 1 приведены характеристики сигналов на входе и выходе инвертора и показаны уровни отчета, относительно которых определяются динамические параметры ЛЭ. Рис. 1. К определению динамических параметров логического элемента (инвертора) Уровням отcчета динамических параметров ЛЭ являются (рассматривается положительная логика, при которой высокий уровень выходного сигнала соответствует 1, а низкий — 0) максимальный уровень логического 0 и минимальный уровень логической 1.
Задержка переключения τ10 определяется как временной интервал между уровнем 1 фронта нарастания входного импульса (положительный импульс) и уровнем 0 фронта спада выходного импульса (отрицательный импульс). Задержка переключения τ01 определяется как временной интервал между уровнем 0 фронта спада входного импульса и уровнем 1 фронта нарастания выходного импульса. Фронты импульса, определяемые между уровнями 1 и 0 спада импульса, обозначаются ф0, между уровнями 0 и 1 нарастания импульса — ф1. Средняя задержка τср ЛЭ определяется как полусумма задержек τ10 и τ01 и служит усредненным параметром быстродействия, используемым при расчете временных характеристик многоэлементных последовательно включенных логических микросхем. Произведение средней задержки на число последовательно соединенных ЛЭ в устройстве дает наибольшую задержку сигнала в этом устройстве. Параметр τср приводится в технических условиях на ИМС. Для упрощения процесса расчета временных характеристик сложных логических цепей часто считают сигналы прямоугольными, т. е. ф0= ф1=0. Помехоустойчивость. Базовый элемент ИМС в статическом режиме может находиться в одном из двух устойчивых состояний (0 или 1). По этой причине различают статическую помехоустойчивость ЛЭ по уровню 0 (U o)и по уровню 1 (U 1). Статическая помехоустойчивость базовых элементов ИМС определяется значением напряжения, которое может быть подано на вход ИМС относительно уровня 0 или 1, не вызывая её ложного срабатывания (например, переход из состояния 1 в состояние 0 или наоборот). Напряжение помехи либо повышает, либо понижает входное напряжение. Если на входе действует напряжение логического 0 (U0), то опасны помехи, имеющие положительную полярность, так как они повышают входное напряжение, что может привести к сбою в работе, т. е. ложному изменению выходных напряжений в цифровом устройстве. При поступлении на вход напряжения логической 1 (U1) и напряжения помехи отрицательной полярности также возможно ложное переключение. Максимально допустимые постоянные напряжения помехи положительной полярности (при напряжении логического 0 на входе) и отрицательной полярности (при напряжении логической 1 на входе) определяют помехоустойчивость ЛЭ по отношению к статическим (длительно действующим) помехам. Внутренние помехи в цифровом устройстве возникают при переключении ЛЭ, поэтому их амплитуда пропорциональна логическому перепаду Uл. Логическим перепадом называется разность напряжений логической 1 и логического 0: . Для оценки помехоустойчивости ЛЭ помимо напряжений Uп1 и Uп0 используют относительные величины: ; , называемые коэффициентом помехоустойчивости. Для повышения помехоустойчивости необходимо увеличивать логический перепад и уменьшать время переключения ЛЭ из состояния 1 в состояние 0 и наоборот. Потребляемая мощность ЛЭ (мощность, потребляемая ЛЭ от источника питания) зависит от его логического состояния, так как изменяется ток Iи.п. в цепи питания. ЛЭ потребляет ток при ; при . Поэтому средняя потребляемая мощность в статическом режиме. . Зная среднюю мощность и число ЛЭ в цифровом устройстве л.э
Семейство HC объединяет цифровые ИС различной степени интеграции: от простых логических элементов, счетчиков, дешифраторов до микроконтроллеров с архитектурой различной сложности. Все элементы, принадлежащие к семейству HC, электрически совместимы, поэтому сопряжение МК 68HC12 с другими элементами семейства HC не вызовет у Вас затруднений. Однако, если в процессе проектирования Вам потребуется подключить к выводам МК 68HC12 интегральные схемы, которые не принадлежат к семейству HC, то Вы должны провести анализ на совместимость электрических характеристик МК и этих ИС. Рис. 5.1. Номограмма электрической совместимости логических элементов Производители электронных компонентов обычно указывают их электрические и динамические характеристики в справочном листе, Для проведения анализа о возможности сопряжения компонентов Вам потребуются следующие восемь параметров (рис. 5.1): VOHP минимальное выходное напряжение логической 1; VOLP максимальное выходное напряжение логического 0; IOHP максимальный выходной ток логической 1; IOLP максимальный выходной ток логического 0; VIHP минимальное входное напряжение логической 1; VILP максимальное входное напряжение логического 0; IIHP максимальный входной ток логической 1; IILP максимальный входной ток логического 0
1. Интегральная микросхема КР1533ТВ6
2. Общие сведения об интегральных микросхемах
3. Понятие юридической ответственности военнослужащих и ее виды - учебник Военное право
5. Интегральные микросхемы (аналоговые и импульсные), как одна из составляющих частей РЭА
9. История развития понятия "функция"
10. Патент – история развития и юридического оформления понятия
11. Все о кофе: виды, производство, история, традиции
12. Международные корпорации: их виды и тенденции развития
13. Виды топлива. Перспективы развития новых видов топлива
14. Правонарушения и преступления. Понятия и виды
15. Авторский договор: понятие и виды
16. Договор купли-продажи, договор имущественного найма, понятие и виды договора перевозки грузов
17. Понятие, содержание и виды юридических лиц коммерческих организаций
18. Понятие, сущность и виды юридических лиц РБ
20. Понятие государственной службы и ее виды
21. Возникновение и развитие, понятие и признаки права. Понятие правосознания, основные функции, виды
25. Правовой статус работодателя: понятия, содержание, виды
26. Форма правления, понятие и виды
27. Правоотношения. Понятия правоотношений и их виды
28. Правоотношения: понятие, признаки и виды
29. Понятие и виды материальной ответственности работников
31. Прикосновенность к преступлению: понятие, виды
32. Явление и понятие установки. Виды установок, экспериментальные исследования установок
33. Сборка полупроводниковых приборов и интегральных микросхем
34. Ценные бумаги: понятие и виды
35. Интегральная модель исторической динамики: структура и ключевые понятия
36. Следственный осмотр: основные понятия, задачи принципы и виды следственного осмотра
37. Формирование понятия призмы и умение ее видеть
42. Договор купли-продажи: понятие, содержание. Иные виды договоров
43. Понятие и виды страхования
44. Понятие, виды и форма сделок
45. Понятия, виды и классификация юридических лиц
46. Топологии интегральных микросхем
47. Понятие, виды и условия действительности сделок
48. Таможенно-правовые нормы, понятие и виды
49. Понятия, виды и классификация юридических лиц
50. Понятие и виды вещественных доказательств
51. Общее понятие о способностях и их видах
53. Понятие правосознания, его структура и виды. Пути повышения правосознания граждан РФ
57. Виды понятий
58. Административно –правовые отношения: понятие, содержание, особенности и виды
59. Стратегии развития предприятия: понятие и виды
60. Понятие и оценка обязательств. Виды краткосрочных и долгосрочных обязательств
61. Основные понятия собственности, ее виды
62. Понятие и виды правомерного поведения и правонарушений
63. Социальное регулирование. Понятие, функции и виды социальных норм
64. Постановления суда I-й инстанции: понятие, виды, содержание, предъявляемые требования.
65. Понятие территории и ее виды
66. Норма права. Понятие, структура, виды
68. Исковая давность. Договор поставки (понятие, юридические характеристики, содержание, виды)
69. Понятие и виды гражданских правоотношений
73. Файловая структура диска. Виды файлов и их обозначение
74. Формирование понятия призмы и умение ее видеть
75. Понятие и виды объектов хозяйственной деятельности
76. Органы государственного управления: понятие, виды и функции
77. Понятие, виды административно-правовых режимов и их правовое регулирование
78. Имущественное страхование: понятие, виды и основные условия
79. Понятие и виды рекламных изданий
80. Понятие и содержание хозяйственного учета и его видов
82. Понятие и виды договора страхования
83. Понятие и виды обязательств. Договор страхования
84. Понятие и виды страхования жизни
85. Понятие и виды ценных бумаг
89. Договор хранения: понятие, виды
90. Компенсационные выплаты. Понятие, виды, основания выплаты
91. Кредитный договор: понятие и виды
92. Налоговый контроль: понятие, задачи, формы, виды и методы
94. Отрасли права: понятие и виды
95. Понятие виды и функции юридической ответственности за экологические правонарушения
96. Понятие жилищного фонда и его виды
97. Понятие и виды вещного права
98. Понятие и виды вещных прав
99. Понятие и виды времени отдыха
100. Понятие и виды гарантий реализации прав и свобод осужденных к лишению свободы