![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Компьютеры, Программирование
Компьютерные сети
Дифференцирующие и интегрирующие цепи |
Лабораторная работа «Дифференцирующие и интегрирующие цепи» Полянчев С., Коротков Р. Цели работы: ознакомление с принципом действия, основными свойствами и параметрами дифференцирующих и интегрирующих цепей, установление условия дифференцирования и интегрирования, определение постоянной времени. Теоретическая часть.В радиоэлектронике и экспериментальной физике возникает необходимость преобразования формы сигналов. Часто это может быть выполнено путём их дифференцирования или интегрирования. Например, при формировании запускающих импульсов для управления работой ряда устройств импульсной техники (дифференцирующие цепи) или при выделении полезного сигнала на фоне шумов (интегрирующие цепи).Анализ простейших цепей для дифференцирования и интегрирования сигналовДифференцирующей называется радиотехническая цепь, с выхода которой может сниматься сигал, пропорциональный производной от входного сигнала Uвых( ) ~ dUвх( )/d (1) Аналогично, для интегрирующей цепи: Uвых( ) ~ тUвх( )d (2) Поскольку дифференцирование и интегрирование являются линейными математическими операциями, указанные выше преобразования сигналов могут осуществляться линейными цепями, т.е. схемами, состоящими из постоянных индуктивностей, емкостей и сопротивлений. Рассмотрим цепь с последовательно соединёнными R, C и L, на вход которой подаётся сигал Uвх( ) (рис.1). Выходной сигал в такой цепи можно снимать с любого её элемента. При этом: UR UC UL = Ri( ) 1/c тi( )d L di( )/d = Uвх( ). (3) Очевидно, что поскольку значения UR, UC и UL определяются параметрами R, C и L, то подбором последних могут быть осуществлены ситуации, когда UR, UC и UL существенно неодинаковы. Рассмотрим для случая цепи, в которой UL » 0 (RC – цепь). А) UC &g ;&g ; UR, тогда из (3) имеем: i( ) = C dUвх( )/d (4) Отсюда следует, что напряжения на сопротивлении пропорционально производной от входного сигнала: UR( ) = RC dUвх( )/d = 0 dUвх( )/d . (5) Таким образом, мы приходим к схеме дифференцирующего четырёхполюсника, показанной на рис.2, в которой выходной сигал снимается с сопротивления R. Б) UR &g ;&g ; UC. В этом случае из (3) получаем: i( ) = Uвх( )/R (6) и напряжение на емкости равно: UC = 1/RC тUвх( )d = 1/ 0 тUвх( )d . (7) Видно, что для осуществления операции интегрирования необходимо использовать RC-цепочку в соответствии со схемой на рис.3.Для получения как эффекта дифференцирования, так и интегрирования, сигнал надо снимать с элемента, на котором наименьшее падение напряжения. Величина Uвых( ) определяется значением постоянной времени 0, равной RC для RC-цепочки. Очевидно, что эффекты дифференцирования и интегрирования в общем случае отвечают, соответственно, относительно малым и большим 0.Условия дифференцирования и интегрированияУточним теперь, как связаны условия А и Б, а также использованные выше понятия «малого» и «большого» 0 с параметрами R, C, L и характеристиками сигнала. Пусть входной сигнал Uвх( ) обладает спектральной плотностью , т.е. (12)Тогда при точном дифференцировании для выходного сигнала получим:, (13)откуда следует, что коэффициент передачи идеального дифференцирующего четырёхполюсника () равен: (14)Рассмотренная нами дифференцирующая цепь (рис.2
) имеет коэффициент передачи: (15)Из сравнения (14) и (15) видно, что рассмотренная нами цепь будет тем ближе к идеальной, чем лучше выполняется условие w 0 &l ;&l ; 1 (16) Причём, для всех частот в спектре входного сигнала. Для упрощения оценки в неравенство (16) обычно подставляют максимальную частоту в спектре входного сигнала wm 0 &l ;&l ; 1. Итак, чтобы продифференцировать некоторый сигнал, необходимо найти его спектральный состав и собрать RC-цепь с постоянной времени 0 &l ;&l ; wm-1, где wm – максимальная частота в спектре входного сигнала. Отметим, что для импульсных сигналов верхнюю границу полосы частот можно оценить по формуле (2) wm = 2p/ u, где u – длительность импульса. Т.о., в этом случае условие дифференцирования запишется в виде 0 &l ;&l ; u (17) Совершенно аналогично можно показать, что для удовлетворительного интегрирования требуется выполнение условия w 0 &g ;&g ; 1 (18) также для всех частот спектра входного сигнала, в том числе и для самой нижней. Аналогично для интегрирования импульсов длительностью u условие интегрирования запишется в виде 0 &l ;&l ; u (19) Из неравенств (16), (18) следует, что при заданной цепи дифференцирование осуществляется тем точнее, чем ниже частоты, на которых концентрируется энергия входного сигнала, а интегрирование – чем выше эти частоты. Чем точнее дифференцирование или интегрирование, тем меньше величина выходного сигнала. Прохождение прямоугольных импульсов через RC-цепиВ качестве примера, иллюстрирующего дифференцирование и интегрирование сигналов, рассмотрим отклик RC-цепей, показанных на рис.2 и 3, на прямоугольный импульс. Возьмём цепь, на выходе которой стоит сопротивление (рис.2), найдём осциллограмму выходного напряжения, т.е. вид UR( ). Пусть в момент времени = 0 на входе возникает скачок напряжения U0 (рис.4).В этом случае для 0 &l ; &l ; u можно записать уравнение цепи в виде: U0 = 1/C тi( )d UR( ). (17) После дифференцирования получим dUR/d UR/ 0 = 0. (18) Поскольку ёмкость С не может зарядиться мгновенно, то для = 0, UR = U0 всё входное напряжение оказывается приложенным к сопротивлению. С учётом этого начального условия решение уравнения (18) запишется в виде:. (19)Экспоненциальный спад выходного напряжения описывает процесс зарядки ёмкости через сопротивление R и соответствующее перераспределение напряжения между R и C. При этом постоянная времени 0 характеризует скорость зарядки ёмкости и может быть интерпретирована как время, за которое напряжение UR уменьшится в е раз. Для 0 &l ;&l ; u экспоненциальная зависимость становится резче, в результате на выходе наблюдаем короткие импульсы в момент начала и окончания входного воздействия, являющиеся удовлетворительной аппроксимацией производной от входного сигнала (рис.4). Если выходное напряжение снимается с конденсатора, то для 0 &l ; &l ; u получим: (21)и для &g ;= u . (22) Если цепь является интегрирующей, то выполняется неравенство 0 &g ;&g ; u, что позволяет использовать разложение экспоненты в ряд Тейлора. В результате для выходного напряжения при 0 &l ; &l ; u получим:. (24)Т.о., выходной сигнал в первом приближении действительно пропорционален интегралу от входного (рис.5
). Практическая часть. Задание 1: Получить амплитудно-частотную и фазово-частотную характеристики RC-цепочки. Построить графики. С = 0,05 мкФ; R = 1,5 кОм Таблица для графиков: f,Гц 103 0,9 1,5 2 3 4 5 6 7 9 11 13 16 20 K 0,85 0,75 0,69 0,54 0,47 0,42 0,31 0,28 0,22 0,19 0,16 0,13 0,08 Dj,o 13,4 18,1 22,0 30,0 41,8 48,6 55,5 56,4 57,8 59,0 60,1 61,6 62,8 График К(f): График Dj(f): С = 0,1 мкФ; R = 470 Ом Таблица для графиков: f,Гц 103 0,2 0,5 0,9 1,4 2 3 4 5 6 7 9 11 13 16 20 К 0,98 0,97 0,95 0,87 0,81 0,70 0,60 0,50 0,44 0,39 0,35 0,26 0,22 0,13 0,09 Dj,o 4,3 9,22 12,9 17,1 21,9 29,2 39,9 47,3 56,2 58,4 60,4 63,7 66,9 69,3 72,5 График К(f): График Dj(f): Видно, что графики для К(f) в обоих случаях совпали с теоретическим. Для графиков Dj(f) наблюдается небольшое различие с теорией, т.к. не удалось достигнуть сдвига фаз p/2. Задание 2: Провести измерение переходной характеристики RC-цепочки при двух способах её включения, сравнить с теорией. Были проведены измерения откликов интегрирующей и дифференцирующей цепей на прямоугольный импульс при двух значениях постоянной времени (см. осциллограммы на миллиметровой бумаге). Вид осциллограмм UC( ) и UR( ) совпадает с рассчитанным в теоретической части отчёта (см. рис. 4,5). Задание 3: Определить 0. Определим величину 0 по наклону касательной к осциллограмме в точке = 0 (см. прилагаемый рисунок). Тогда значение, отсечённое касательной на оси абсцисс, и будет соответствовать 0. Видно, что 0 = 0,8 50 10-6 с = 40 мкс. Вывод: в данной работе мы изучили дифференцирующие и интегрирующие электрические цепи. Были поучены АЧХ и ФЧХ для RC-цепочки, установлены условия дифференцирования и интегрирования. Также был исследован отклик четырёхполюсников на прямоугольный импульс, измерены их переходные характеристики и экспериментально определена величина 0. Литература 1. В.Н.Ушаков. ”Основы радиоэлектроники и радиотехнические устройства”. М., «Высшая школа», 1976. 2. Е.И. Манаев. “Основы радиоэлектроники”. М., «Радио и связь», 1985.
Следующей ступенью явится попытка установить, как нейроны взаимодействуют, и выяснить значение посылаемых ими сигналов. Один из способов разобраться в общей организации мозга состоит в том, чтобы рассмотреть ее в форме приблизительной схемы. На входе лежат группы рецепторов - видоизмененные нервные клетки, специализированные для преобразования в электрические сигналы разных форм информации, которая приходит к ним из внешнего мира. Одни рецепторы реагируют на свет (зрение), другие на химические воздействия (вкус и обоняние), третьи на механическую деформацию (осязание и слух). Рецепторы образуют контакты с первой группой нейронов, те в свою очередь со следующими, и так далее. На каждом этапе аксоны ветвятся и подходят к следующему нейрону цепи, на котором конвергирует множество аксонов. Каждая воспринимающая клетка интегрирует возбудительные и тормозные импульсы, конвергирующие на ней от клеток низшего порядка. Раньше или позже, после ряда этапов нервные аксоны оканчиваются на клетках железы или мышцы - выходах нервной системы
1. Интегрирование линейного дифференциального уравнения с помощью степенных рядов
2. Интегрированный проект учебного процесса
3. Расчет переходных процессов в линейных цепях с сосредоточенными параметрами
4. Использование цепей Маркова в моделировании социально-экономических процессов
5. Переходные процессы в несинусоидальных цепях
9. Расчёт переходных процессов в линейных электрических цепях с сосредоточенными параметрами
10. Интегрированная цепь поставок
11. Исследование переходных процессов в электрических цепях с источником постоянного напряжения
12. Расчет переходных процессов в электрических цепях
13. Операторный метод расчета переходных процессов в линейных цепях
14. Клонирование и анализ генов легких цепей иммуноглобулинов стерляди
15. Серое и белое вещество головного мозга
16. Биологическая роль гидролиза в процессах жизнедеятельности организма
17. Понятие о волнении. Процесс возникновения развития и затухания ветровых волн
18. Влияние вулканизма и поствулканических процессов на окружающую среду
19. Методы и модели демографических процессов
20. Бюджетное устройство и бюджетный процесс РФ
21. Государственное стимулирование инвестиционного процесса: опыт США и Юго-Восточной Азии
25. Прокурор в хозяйственном процессе
26. Вещественные доказательства в гражданском процессе
27. Гражданский процесс (Контрольная)
28. Гражданский процесс (Контрольная)
29. Гражданский процесс (Шпаргалка)
30. Иск в гражданском процессе: теория и практика
31. Стороны в гражданском процессе
32. Кассационное производство в гражданском процессе
33. Шпоры по гражданскому процессу (Новый кодекс)
34. Шпаргалка к Гос Экзамену по Гражданскому Процессу (по ГПК РФ)
35. Законодательный процесс в Древних Афинах
36. Уголовный процесс по Соборному Уложению 1649 года
42. Творческий процесс создания фильма
43. Структура и организация учебного процесса в средневековом университете (Болонья, Париж, Прага)
44. Роль техники и технологии в процессе развития культуры
45. Рецезия на повесть Ф. М. Достоевского "Белые ночи"
46. Символизм (В.Брюсов, Д.Мережковский, З.Гиппиус, К.Бальмонт,А.Белый, В.Иванов)
47. Анализ комедии В. Шекспира "Много шума из ничего"
48. Петр I, взаимосвязь политических и социально-экономических процессов
49. Конституционный процесс в Украине. Конституция Украины 1996 года
50. Массовые репрессии и политические процессы 20-х 30-х годов
51. Россия 1917 - 1922гг. Распад цивилизованного конгломерата. Характеристики процесса
53. Принципы работы системы управления параллельными процессами в локальных сетях компьютеров
57. Исследования устойчивости и качества процессов управления линейных стационарных САУ
58. Cистема Автоматизированного Управления процесса стерилизации биореактора
59. Теория вероятностей и случайных процессов
60. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
61. Численное интегрирование определённых интегралов
64. Влияние температуры на жизненные процессы
65. Эффективность влияния озона на течение перитонита и процесс спайкообразования в эксперименте
66. Роль витаминов в процессе роста и развития человека
67. Физиологические механизмы психических процессов и состояний
68. Применение психологических знаний в процессе оперативно - розыскной деятельности
69. Уголовный процесс (Контрольная)
73. Подозреваемый и обвиняемый в уголовном процессе
74. Субъекты и участники уголовного процесса
75. Участие адвоката в уголовном процессе
76. Некоторые вопросы понятия потерпевшего в современном уголовном процессе Российской Федерации
78. Биология раневого процесса: лечение ран
80. Цель воспитания, его место в воспитательном процессе (Контрольная)
82. Активизация учебного процесса
83. Нравственное воспитание младших школьников в учебно-воспитательном процессе
84. Индивидуализация в учебно-воспитательном процессе
85. Развитие познавательного интереса к урокам русского языка. Роль занимательности в процессе обучения
90. Урок - как основная форма организации учебного процесса, его характеристика и требования к нему
91. Потребительские свойства сыров и формирование их в процессе производства
92. Процесс становление власти в России (Доклад)
93. Развитие интеграционных процессов в СНГ
94. Особенности политического процесса в России на современном этапе
96. Избирательный процесс и избирательные технологии
97. Технологический процесс сборки и сварки изделия "СУШИЛКА"
98. Использование чёрной и цветной металлургии, их процессы и характеристики