![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Экспериментальные методы изучения космических лучей. Крупнейшие экспериментальные установки |
§1. Экскурс в историю развития исследований космических лучей Для начал напомним, что космические лучи - это поток ядер атомов и элементарных частиц высокой энергии, приходящих на Землю из космоса (первичные космические лучи), а также элементарные частицы, рожденные ими в результате взаимодействий в атмосфере (вторичные космические лучи). Открытие космических лучей было сделано случайно в том смысле, что никто из физиков не ставил специальной задачи их обнаружить, когда начинал работать с электроскопами — прообразами современных воздушных ионизационных камер. В течение 10-летнего периода, предшествующего открытию, многие физики наблюдали слабую ионизацию воздуха при отсутствии каких-нибудь внешних источников ионизации: в 1900г.— немецкие ученые Ю. Эльстер и Г. Гейтель и английский ученый Ч. Т. Вильсон, в 1903 г.— Э. Резерфорд и Г. Кук, в 1909—1911 гг.— немецкий физик Т. Вульф, шведский метеоролог А. Гоккельидр. Доказал внеземное происхождение источника ионизации воздуха австрийский физик В. Ф. Гесс после совершения в 1911—1912 гг. семи полетов на воздушных шарах, в гондоле которых находились герметические электрометры, поднявшись в последнем рекордном полете на высоту 5350 м. Измерения Гесса показали, что ионизация воздуха плавно уменьшается вплоть до высоты 1000 м над уровнем моря, а затем начинает медленно расти и на высотах 3000—4000 м уже превышает ионизацию на уровне моря. Результаты Гесса подверг критике немецкий физик В. Кольхёрстер, который отрицал гипотезу о внеземном происхождении источника ионизации воздуха. В 1913—1914 гг. он совершил пять полетов на воздушных шарах, достигнув высоты 9300 м. С помощью самой совершенной по тому времени ионизационной камеры Кольхёрстер, наперекор своим убеждениям, подтвердил и уточнил данные Гесса. Окончательно доказал внеземное происхождение космических лучей Р. А. Милликен (США), тоже не веривший выводам Гесса, который в серии опытов 1923—1926 гг. применил метеорологические баллоны, оснащенные необходимой аппаратурой для автоматических измерений поглощения космических лучей атмосферой Земли. Он же ввел термин космические лучи. Применение шаров—зондов позволило Милликену достичь высоты 15500 м. Датой открытия космических лучей принято считать 1912 г., а Гесса — первооткрывателем их, что выразилось официально в присуждении ему Нобелевской премии по физике в 1936 г. В 1925 г. Л. В. Мысовский и Л. Р. Тувим (СССР), Р. А. Милликен и Дж. Камерон (США) независимо изучали поглощение космических лучей в озерной воде и показали существование проникающего излучения. В том же году Г. Гофман (Германия) обнаружил наличие мягкой компоненты в космических лучах на уровне моря, но выводы о существовании мягкой и жесткой компонент в космических лучах были сделаны много позже. В 1923—1927 гг. советский физик Д. В. Скобельцын изучал эффект Комптона в камере Вильсона. После помещения в 1925 г. Скобельцыным этой камеры в магнитное поле возникла принципиально новая методика в физическом эксперименте, которая позволила ему обнаружить в 1927 г. «ультра-бета- частицы», иногда появлявшиеся в камере группами до трех штук.
Работа Скобельцына не опровергала бытовавшую тогда гипотезу о фотонной природе космических лучей, но дала мощный толчок к изучению механизма их поглощения. Нидерландский физик Якоб Клей в 1927 г. возвращался пароходом в Голландию с о. Ява, имея при себе ионизационную камеру, и обнаружил широтный эффект космических лучей: уменьшение их интенсивности при приближении к экватору на 10—15 % по сравнению со средними широтами. Результат Клея означал, что первичное космическое излучение, входящее в атмосферу Земли, является заряженным. Данные Клея были объяснены немецкими физиками В. Боте и В. Кольхёрстером, применившими в 1929 г. вертикальный телескоп газоразрядных счетчиков Гейгера—Мюллера, изобретенный за год до этого для регистрации космических лучей. Два счетчика были окружены со всех сторон и отделены друг от друга слоем защиты, но регистрировали, по мнению авторов, одновременные прохождения заряженных частиц. В 1930 г. итальянский физик Б. Росси, работавший в Германии, применил схему совпадений для регистрации одновременных событий в трех газоразрядных счетчиках. Новая методика стала впоследствии мощным инструментом в физических исследованиях. В частности, она позволила Росси в 1932 г. увидеть наличие мягкой и жесткой компоненты в космических лучах. Накопление экспериментальных данных стимулировало развитие теории. В 30-е годы стала бурно развиваться квантовая электродинамика, опережая эксперимент на некоторых направлениях и обогащая его. В 1929 г. была развита теория комптоновского рассеяния фотонов О. Клейном (Швеция) и И. Нишиной (Япония), в которой учитывались состояния с отрицательной энергией, введенные П. Дираком (Англия) в 1928 году. В 1932 г., при помощи камеры Вильсона, помещенной по методу Скобельцына в магнитное поле, К. Д. Андерсон (США) обнаружил в космических лучах позитрон, предсказанный Дираком. В 1930—1932 гг. немецкий физик X. А. Бете, эмигрировавший из Германии в 1933 г., и в 1933 г. Ф. Блох (США) получили формулу для ионизационных потерь заряженных частиц, что облегчило интерпретацию результатов Росси 1932 г. X. А. Бете и В. Гайтлер (Англия) в 1934 г. разработали теорию радиационных процессов и получили формулы для вычисления эффективных поперечных сечений тормозного излучения электрона и образования гамма-квантом электрон-позитронных пар. В 1935 г. П. Оже (Франция).и Б. Росси доказали наличие двух компонент в космических лучах: мягкую, поглощаемую 10 см свинца, и жесткую, которая не поглощается полностью даже метровым слоем свинца. В 1934 г. С. Н. Вернов (СССР) впервые применил автоматическую регистрацию интенсивности космического излучения в полетах шаров зондов путем установления на них радиопередающей аппаратуры, подключенной к выходу двух счетчиков Гейгера—Мюллера. Счетчики были разделены слоем свинца толщиной 2 см, а аппаратура выделяла одновременные разряды, возникающие в них. Впоследствии, в 1936— 1939 гг., разработанный метод помог С. Н. Вернову измерить широтный эффект в стратосфере в диапазоне от 5 до 56° и показать, что подавляющая часть первичного космического излучения состоит из заряженных частиц.
В 1938 г. П. М. С. Блэкетт (Англия) и Дж. Оккиалини (Италия) с помощью камеры Вильсона, управляемой телескопом из счетчиков Гейгера—Мюллера, обнаружили ливни вторичных заряженных частиц, которые впервые наблюдал Д. В. Скобельцын в 1929 г. в виде групп треков «ультра- бета-частиц». А несколько ранее, в 1937 г. индийский физик Г. Баба и В. Гайтлер в Англии, а также, независимо от них, Дж. Карлсон и Дж. Р. Оппенгеймер в.сша построили каскадную теорию электронно-фотонных ливней. В 1935 г. японский физик X. Юкава предположил существование нестабильных заряженных или нейтральных частиц мезонов—квантов обменных ядерных сил с массой 200 — 300 масс электрона. Спустя два года, в 1937 г., К. Д. Андерсон и С. Г. Неддермейер (США), наблюдая треки заряженных частиц в камере Вильсона, которая была помещена в магнитное поле, до и после прохождения свинцовой или платиновой пластинки, пришли к заключению, что в составе космических лучей имеется нестабильная частица с массой в 100 раз большей массы электрона. Поначалу новая частица была отождествлена с мезоном Юкавы, хотя слабое поглощение ее в атмосфере являлось противоречием. Впоследствии выяснилось, что эта массивная проникающая частица есть «тяжелый электрон» — мюон, который не является мезоном Юкавы. В 1938 г. П. Оже и независимо В. Кольхёрстер, регистрируя совпадения разрядов в счетчиках Гейгера—Мюллера, которые находились на удалении друг от друга в горизонтальной плоскости, обнаружили широкие атмосферные ливни. Вторая мировая война прервала практически все физические мирные исследования, поэтому научные публикации об изучении космических лучей практически перестали выходить даже в США. Только с 1947 г. число публикаций стало снова значительным. Война стимулировала развитие техники, чем повлияла на характер послевоенных исследований. Следует отметить, что послевоенное изучение физики космических лучей распалось на несколько направлений и проследить историю развития исследований достаточно сложно. Постепенно выделилось два важнейших аспекта исследований: ядерно-физический и космофизический. Оба направления, безусловно, перекрываются во многих вопросах, но имеют и неперекрывающиеся задачи. К числу важнейших достижений ядерно-физического аспекта следует отнести открытие в космичеких лучах пи- мезонов и и странных частиц, что дало мощный толчок развитию физики элементарных частиц; результаты по множественному рождению частиц, механизму образования и развития широкого атмосферного ливня, нейтринные эксперименты и опыты, связанные с поиском протонного распада. Космофизический аспект в ряде экспериментов связан с ядерно-физическим аспектом: нейтринные эксперименты, поиск локальных источников и анизотропии космических лучей и др. Прогресс космофизического аспекта в немалой степени связан также с развитием ракетной космической техники, позволившей изучать космические лучи за пределами атмосферы Земли в пределах Солнечной системы, понять строение магнитосферы Земли и межпланетного магнитного поля. В 1947 г. Ч. М.Дж. Латтес (Бразилия), Дж. Оккиалини (Италия) и С. Ф. Пауэлл (Англия), анализируя следы заряженных частиц в ядерных эмульсиях, которые экспонировались на вершине Пик-дю-Миди (2800 м) в Альпах (Франция) и на горе Чакалтай (5500 м) в Боливии, открыли новую частицу —пи-мезон.
В самом деле, если вы не можете правильно описать вакуум, как можно рассчитывать на правильное описание чего-либо более сложного». Однако задача построения теории физического вакуума оказалась значительно сложнее, чем предполагал Дирак. В частности, из его собственных работ вытекало, что «вакуумное море» почти ничем не проявляет себя. Тем не менее, по мере дальнейшего развития науки, накапливалось все больше фактов, свидетельствующих о том, что «физический вакуум» не есть чисто условное изобретение ученых, а реальное физическое состояние материи. Тот же Дирак предполагал, что если из вакуума в результате внешнего энергетического воздействия удастся «выбить» электрон, превратив его в реальную вещественную частицу, то на его месте в «вакуумном океане» должна остаться своеобразная «дырка», обладающая всеми свойствами электрона, но положительным зарядом. И уже спустя год после этого предсказания «положительный электрон» – «позитрон» был экспериментально обнаружен в космических лучах. В дальнейшем выяснились факты еще более поразительные
1. Экспериментальные методы исследования в системе исторических наук
2. Экспериментальное исследование свойств методов Рунге-Кутты
3. Методы исследования в цитологии
5. Методы исследования в социологии
9. Электронно-микроскопические методы исследования в медицине
11. Методы исследования темперамента
12. Микрополосковый метод исследования диэлектрической проницаемости материалов на сверхвысоких частотах
13. Социология религии: статус, предмет, уровни знаний и методы исследования
14. Методы исследования городской среды
15. Предмет экономической географии и региональной экономики. Методы исследований
16. Лекции Математические методы исследования экономики
17. Методы исследования поведения животных
20. Проблема выбора метода исследования при изучении «Языка власти»
21. Опрос - как метод исследования в социологии
25. Аудит как метод исследования
27. Методы исследования геологии Киева
28. Лингвистические методы исследования эмоционального концепта удивления
29. Методы исследования нелинейных систем
30. Органолептические методы исследования меда
32. Использование социологических методов исследования в связях с общественностью
33. Методы исследования больных с заболеваниями эндокринной системы
34. Методы исследования и симптоматология при заболеваниях сердечнососудистой системы
35. Методы исследования мочевыводящей системы. Исследование в гинекологии и акушерстве
36. Методы исследования сенсорных систем
37. Методы исследования функции внешнего дыхания
41. Сужение левого предсердно-желудочкового отверстия: дополнительные методы исследования и прогноз
42. Диверсифицированные методы исследования систем управления
43. Логико-интуитивные методы исследования систем управления. Метод тестирования
44. Методы проявления системной идеи. Эвристические методы исследования систем управления
45. Специфические методы исследования
46. Методы исследования в педагогике
50. Методы исследования в психологии
51. Методы исследования личности
52. Методы исследования педагогической психологии
53. Общие и специальные методы исследования конфликтов с помощью опросника Айзенка
57. Современные методы исследования психофизиологии памяти
58. Основные проблемы и методы исследования военной демографии
59. Методы исследования социально-экономических и политических процессов
60. Методы исследования биологически активных соединений
63. Спектр масс элементарных частиц, связь микро и макро масштабов, соотношение космических энергий
64. Статические методы против виртуальных методов
66. Метод ортогонализации и метод сопряженных градиентов
67. Графический метод и симплекс-метод решения задач линейного программирования
68. Космический мусор – угроза безопасности космических полетов
69. Исследование растворимости и ионного обмена как инструмент изучения равновесий в водном растворе
73. Методы корреляционного и регрессионного анализа в экономических исследованиях
74. Методичка по экспериментальной хирургии (МБФ РГМУ)
75. Методы политологических исследований (Контрольная)
77. Исследование методов охлаждения садки колпаковой печи с помощью математического моделирования
78. Наблюдение как метод социально – психологического исследования
79. Методы психологических исследований
80. Исследование помехоустойчивого канала передачи данных методом имитационного моделирования на ЭВМ
81. Контент-анализ как метод конкретных политико-социологических исследований
82. Методы поиска и исследований в преподавании физики
83. Методологическое значение сравнительного метода в зоологических исследованиях
84. Методы и процедуры маркетинговых исследований (WinWord, Excel)
89. Исследование мышления больных шизофренией методом пиктограмм
90. Об экспериментальном методе в психологии
91. Методы в психофизиологических исследованиях
92. Характеристика методов психического исследования. Психика и нервная система
93. Исследование религиоведческой концепции Фрейда - психоаналитического метода в целом
94. Экспериментальный метод в психологии
95. Основные методы психологических исследований
96. Исследование помехоустойчивого канала передачи данных методом имитационного моделирования на ЭВМ
98. Методы социологических исследований
99. Статистические методы в исследовании потребления населения