![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Информационное управление клеточными процессами |
Калашников Юрий Яковлевич Живая клетка – это чрезвычайно мощная информационная управляющая система, представляющая собой уникальный центр по синхронной переработке сразу трёх важнейших составляющих – органического вещества, химической энергии и молекулярной информации. Она является той элементарной биологической единицей, которая обладает всеми свойствами живого. Клетка обычно представляет собой микроскопический объект, где на молекулярном уровне рождается удивительный мир и жгучая загадка жизни. Можно сказать, что это и есть те, издревле разыскиваемые, таинственные “Врата Жизни”, из которых каждый из нас появляется на свет как информационный биологический аналог своих близких и далёких предков. Именно через клетку судьба нам дарит Жизнь – драгоценное диво Вселенной. В своей новой статье, которая является логическим продолжением и развитием идей молекулярной биологической информатики, автор предлагает к рассмотрению информационную концепцию самоуправления живой клеткой. 1. Пути исследования сущности живого. Исследование биологической формы движения материи в настоящее время, судя по состоянию молекулярных наук, сводится к изучению физико-химических процессов обмена веществ и энергии в живых системах, то есть к поиску путей и изучению прохождения тех многочисленных биохимических реакций, которые объединены общим понятием – метаболизм. Не случайно, одна из основных формулировок биологии, определяющая сущность жизни, гласит, что “жизнь - это обмен веществ и энергии в организме”. Поэтому, когда сегодня говорят о клетке как об элементарной структурно-функциональной единице всего живого, то под этим понятием, в первую очередь, понимают биохимическую часть её сущности. Именно с этой точки зрения, её изучают и исследуют различные биологические науки: биофизика, биохимия, молекулярная биология, генетика, геномика, цитология и многие другие дисциплины. Как мы видим, до сегодняшнего дня в изучении живой формы материи доминирует культ физико-химического направления. Между тем, следует отметить, что вся многосложная “паутина” целенаправленных и упорядоченных химических превращений в клетке формируется не сама по себе, а является результатом деятельности весьма сложной управляющей системы. Ясно, что живая клетка должна обладать своими устройствами, предназначенными для “автоматизированной” переработки органического вещества, химической энергии и молекулярной информации. В противном случае эти процессы просто не могли бы иметь места. Поэтому многочисленные последовательности химических реакций основных путей клеточного метаболизма, по своей сути, могут относиться только к процессам управляемым. Очевидно, что в настоящее время молекулярная биология, в совокупности с другими дисциплинами, изучает и исследует только те процессы, которые в живой клетке являются вторичными, зависящими от работы системы управления. А первичные, – управляющие клеточные процессы, обеспечивающие управление и генерацию клеточного метаболизма, до сих пор практически не поддаются изучению. Между тем, только они составляют главную сущность живого, и только они обеспечивают все жизненные процессы клеток и организмов.
Следовательно, основная, фундаментальная часть живого по тем или иным причинам, почему-то, выпала из поля зрения молекулярных биологических наук. В силу этих обстоятельств, по вторичной, – управляемой части живого, современная наука накопила обширнейшие исследовательские данные, сведения и знания, полученные многочисленными биологическими науками. Однако по первичной, самой фундаментальной и неисследованной части, в активе у биологических наук имеются лишь данные о структурно-функциональной организации ДНК, изученный генетический код и фрагменты репликации, транскрипции и трансляции генетической информации, указывающие на наличие в каждой живой клетке целостной молекулярно-биологической системы управления. Причем эта, – самая необходимая и востребованная область науки, после выдающихся открытий “спирали жизни” (ДНК), генетического кода и других достижений, вот уже около полувека, если можно так сказать, живет знаниями вчерашнего дня. К сожалению, мало прибавилось и дисциплин, которые изучают и исследуют информационную сущность жизни. Хотя уже достаточно давно известно, что генетические и информационные молекулярно-биологические технологии правят великим миром живого уже более 3,5 миллиардов лет! Биологи до сих пор пытаются обойтись без исследования закономерностей молекулярной информатики. А проблемы организации живой материи и функционального поведения белковых и других молекул они пытаются решать по-своему. Однако нельзя же серьезно относиться к той концепции, которая без всяких обоснований декларирует, что белковые и другие макромолекулы и структуры живой клетки просто “самоорганизуются”, а ферменты, при этом, становятся теми катализаторами, которые получают способность управлять всеми химическими превращениями и биологическими функциями в живых клетках и организмах. Ясно, что катализаторы способны в определённой мере ускорять протекание химических реакций, но не до таких же астрономических значений (10 в восьмой – 10 в двадцатой степени раз!) и не с такой же производительностью, избирательностью и управляемостью, как это делают ферменты! . Поэтому процесс самоорганизации живой материи – далеко не изученный процесс, который, по моему мнению, связан, прежде всего, с информационной сущностью живого, а ферменты – это далеко не простые химические катализаторы даже только потому, что в своей работе применяют метод полифункционального катализа. Очевидно, что ферменты различного назначения, по представлениям сегодняшнего дня, – это сложные автоматы естественных нанотехнологий, которые применяются живой природой уже многие сотни миллионов лет. Ясно, что феномен био-логического управления, которым обладают ферменты и другие клеточные белки, по силам лишь молекулярным биологическим автоматам или манипуляторам с программной биохимической логикой управления. Живые клетки – это весьма сложные естественные информационные самоуправляемые системы, которые функционируют на молекулярном уровне и поэтому часто имеют микроскопические размеры. Протекающие процессы в клетке настолько “автоматизированы”, взаимосвязаны и сопряжены друг с другом, что порой трудно определить – где идёт преобразование вещества, а где энергии или информации.
Логика структурного построения, функционального поведения и взаимодействия биологических молекул определяется генами, поэтому все эти процессы имеют биохимическую основу и носят информационный характер. Любой процесс функционирования сложного технического или живого объекта всегда и непременно связан с передачей и преобразованием информации. Поэтому исследователей живого всегда волновал вопрос, как и каким образом, генетическая информация определяет не только структурную организацию, но и весь широкий диапазон биологических функций и химических превращений в живой клетке? 2.Информационные компоненты живого. В первую очередь необходимо отметить, что структурное построение и функциональное поведение биологических молекул в живых системах подчинено не только известным физическим и химическим законам, но и особым принципам и правилам, которые, по мнению автора статьи, следует отнести к закономерностям молекулярной биохимической логики и информатики! Поэтому, чтобы разобраться в работе управляющей и управляемой клеточных системах, в первую очередь, необходимо понять не только принципы и правила их действия, но и осмыслить закономерности применения молекулярной элементной базы. Известно, что всё живое на Земле, от ничтожной бактерии до человека, состоит из одинаковых “строительных блоков” – стандартного набора более чем трёх десятков типовых функциональных био-логических (биохимических) элементов. Этот типовой набор представляет собой ничто иное, как элементную базу, или общий молекулярный биологический алфавит, который, по мнению автора, служит не только для построения биомолекул, но и для кодирования и программирования молекулярных структур и функций живой материи. В состав этого уникального комплекса элементов входят различные системы био-логических элементов (отдельные молекулярные алфавиты): 1) восемь нуклеотидов, – “четыре из них играют роль кодирующих единиц ДНК, а другие четыре используются для записи информации в структуре РНК” ; 2) двадцать различных стандартных аминокислот, которые кодируются в ДНК и служат для матричного построения белковых молекул; 3) несколько жирных кислот, – сравнительно небольшое число стандартных органических молекул, служащих для построения липидов; 4) родоначальниками большинства полисахаридов является несколько простых сахаров (моносахаридов) и т. д. Все эти химические буквы и символы живой природы являются натуральными дискретными единицами молекулярной информации. Важно также отметить, что весь этот комплекс элементов обладает функциональной полнотой, так как содержит функционально полный набор био-логических элементов. Именно поэтому живая природа, пользуясь био-логическими элементами, способна к построению и реализации любых биологических структур и функций. Интересно, что кроме семантики сообщений все био-логические элементы обладают еще и универсальной природной способностью к выполнению различных – химических, энергетических, программных и других биологических функций. Информационные сообщения не могут перемещаться во времени и в пространстве нематериальным способом. Поэтому информация в живой системе, – это содержательные сведения, заключенные в том или ином послании или сообщении генома, которые хранятся, передаются и используются только в закодированной молекулярной форме в виде биологических молекул! Любой информационный код (и не только генетический) в живой клетке записывается химическим способом с помощью элементарной формы органического вещества, поэтому различные посылки и сообщения переносятся в структурах разных макромолекул.
УСКОРЕНИЕ ПОИСКА ЛЕКАРСТВА ОТ РАКА Электронные информационные технологии не только вдыхают жизнь в существующие отрасли, но и рождают новые. Хорошим примером может служить связанная с высокими рисками сфера генетических исследований, где компаниям приходится годами вкладывать огромные ресурсы без какой бы то ни было гарантии успеха. В таких областях, оперирующих исключительно знаниями, переход на электронные информационные потоки может означать удвоение темпов исследований и повышение шансов на успех. Предметом генетических исследований является молекула ДНК, которую часто называют строительным кирпичиком биологической жизни. ДНК содержит гены, управляющие всеми клеточными процессами, такими, как усвоение питательных веществ, клеточное дыхание, построение различных элементов и структур живой клетки. В процессе генетического кодирования гены управляют типом и количеством синтезируемых белков; белки же непосредственно реализуют все химические процессы внутри клетки. Если ДНК будет повреждена или подвергнется мутации, ее управляющие инструкции могут оказаться неверны; в результате вместо нужных белков начнут синтезироваться их измененные формы или изменится объем «производства» — нарушится химический баланс клетки
1. Информационное и техническое обеспечение системы управления персоналом
3. Информационные аспекты взаимодействия в системе "человек - техника - природа"
4. Информационный анализ англосаксонской балансовой системы
5. Проектирование корпоративных информационных систем и управление
9. Информационное обеспечение процесса управления сбытом продукции фирмы
12. Інформаційні системи і технології підприємства
14. Інформаційні системи і технології у фінансових установах
15. Системы технологий промышленности. Строительные материалы
16. Анализ государственного управления системы здравоохранения городского округа Самара
19. Системы технологий ЖКХ. Ремонтно-строительное хозяйство
20. Реферат по информационным системам управления
21. Информационные технологии в системах управления гостиничным предприятием
25. Информационные технологии в управлении предприятием
26. Информационные технологии управления
27. Информационные Технологии в Управлении
29. Новые информационные технологии в процессе реформирования системы образования
31. Информационные системы управления
33. Информационные технологии управления
35. Роль современных информационных технологий в повышении эффективности управления
36. Информационные технологии управления страховой деятельностью
37. Интеллектуальные информационные технологии и системы: генетические алгоритмы
41. Информационные системы управления проектами
42. Информационные технологии в антикризисном управлении
43. Информационные технологии в управлении в АПК
44. Информационные технологии управления
45. Информационные технологии управления
46. Использование автоматизированных информационных технологий в управлении
47. Новые информационные технологии в системе непрерывного образования
49. Роль информационных технологий в управлении предприятием
50. Автоматизированная информационная технология (АИТ) в налоговой системе
51. Информационные системы и технологии в логистике
52. Анализ информационной составляющей системы управления на примере ООО "Радуга"
53. Информационные системы как интеллектуальный инструмент управления предприятием
57. Информационные технологии, используемые в управлении
58. Отчёт об информационной системе управления предприятием "Галактика"
60. Управление информационными и финансовыми потоками в экономических системах
61. Автоматизированные информационные системы управления персоналом предприятия
62. Информационные технологии в управлении
63. Информационные системы управления производством
64. Информационные системы в управлении экономическим объектом
65. Влияние космоса на современные информационные технологии
66. Автоматизация информационного взаимодействия в системе органов государственного финансового контроля
67. Информационные системы в экономике
68. Использование информационных технологий в туризме
69. Автоматизированные информационные технологии в офисе
73. Компьютерные сети Информационных технологий
74. Информационно-поисковые системы на примере "Рамблера"
75. Использование лазеров в информационных технологиях
76. Определение эффективности применения информационной технологии
77. Разработка информационно-справочной системы "Сводка погоды" /Prolog/
78. Разработка информационно-справочной системы "Картотека ГАИ" /Prolog/
79. Разработка информационно-справочной системы "Технический паспорт автомобиля" /Prolog/
80. Разработка информационно-справочной системы "Технический паспорт автомобиля" /Prolog/
81. Информационные системы в экономике
82. Разработка фрагмента информационной системы "АБОНЕНТЫ ГТС"
83. Информационная система учета кадров АО "Красноярское речное пароходство"
84. Информационные технологии в фармации
85. Информационные технологии в экономике. Средства организации экономико информационных систем.
89. Информационная система складского терминала
90. Разработка справочно-информационной системы «Детский сад» в среде СУБД
91. Информационные системы маркетингового анализа
92. Информационно-правовые системы
93. Новые информационные технологии обучения в математике
95. Информационные технологии в социально-экономическом и политическом анализе
96. Информационные технологии в социальной сфере
97. Применение информационных технологий в процессе обучения химии
98. Экономическая оценка использования новых информационных технологий в бухгалтерском учете