![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Промышленность и Производство
Техника
Паровые машины |
Паровые машины Паровая тяга все еще обеспечивает значительную часть требуемой нам энергии. Даже лучшие из современных атомных реакторов всего лишь источники тепла, превращающие воду в пар для вращения турбин, соединенных с электрогенераторами. Первая паровая машина была изобретена в I в н. э. греческим инженером Геро Александрийским. Полый шар был подвижно закреплен на двух трубах, через которые подавался пар из небольшого котла. Пар наполнял шар и выходил через две трубки, отходящие от противоположных его сторон. Струи выходящего пара заставляли шар вращаться. Хотя это устройство и представляло определенный интерес, в те времена оно оказалось бесполезным. Первая паровая машина, нашедшая практическое применение, была создана в 1698 г английским инженером Томасом Сэвери. Пар охлаждался в камере до образования конденсата. В результате резкого уменьшения объема возникал парциальный вакуум, используемый для откачивания воды из угольных шахт. Сила поршня В двигателе, изобретенном английским инженером Томасом Ньюкоменом ок. 1710 г, пар внутри цилиндра толкал вверх поршень. За тем цилиндр охлаждали, чтобы сконденсировать пар и вернуть поршень в нижнее положение. При конденсации пара давление в цилиндре падало, и атмосферного давления было достаточно, чтобы поршень опустился вниз. Поэтому Ньюкомен назвал свой двигатель пароатмосферным. Он применялся для работы шахтных насосов. Хотя эффективность этого двигателя была выше, чем у машины Сэвери, он работал очень медленно и с низким КПД. Это объясняется тем, что после охлаждения цилиндр нужно было снова нагревать, чтобы заставить пар толкать поршень вверх, иначе он бы сразу конденсировался. Двигатель Уатта Эту проблему решил шотландский инженер Джеймс Уатт.В созданном им в 1769 г двигателе пар направлялся в отдельную камеру для конденсации. Так как цилиндр не нужно было поочередно нагревать и охлаждать, тепловые потери двигателя были относительно небольшими. Кроме того, двигатель Уатта был более быстродействующим, поскольку можно было подавать большее количество пара в цилиндр, как только поршень возвращался в свое исходное положение. Благодаря этому и другим усовершенствованиям, придуманным Уаттом, для паровой машины нашлись многочисленные практические применения. К наступлению викторианской эпохи мощные паровозы совершили революцию в средствах передвижения по суше. Паровые машины также обеспечивали энергию для печатания газет, ткачества и для работы стиральных машин в "паровых" прачечных. Паровые двигатели использовались на площадках аттракционов, а фермеры с помощью паровой тяги пахали землю. Уборщики пользовались работающими на пару пылесосами, а в престижных городских парикмахерских были даже щетки для массажа кожи головы с паровым приводом. Вращательное движение В большинстве первых паровых машин двигающиеся в цилиндрах поршни создавали возвратно-поступательное движение, которое затем можно было преобразовывать во вращательное движение с помощью механических устройств. Маркиз де Дион был одним из родоначальников автомобилестроения во Франции. На фото он управляет трехколесным автомобилем с паровым двигателем, который был построен им в 1897 г.
Двигатель установлен спереди и имеет привод на заднее колесо. Паровые турбины сразу преобразуют энергию пара во вращательное движение. В XIX в некоторые изобретатели экспериментировали с паровыми турбинами, но только в 1884 г английский инженер Чарльз Парсонс создал рентабельную и работоспособную конструкцию. Спустя несколько лет после изобретения, его турбины стали использоваться на судах и в генераторах тока Преобразование энергии Паровые двигатели и турбины преобразуют тепло в энергию. При этом тепло от сжигания топлива идет на кипячение воды, объем которой в парообразном состоянии увеличивается в 1600 раз, а давление пара создает движение. В поршневых двигателях пар расширяется в цилиндре и толкает поршень. Двухцилиндровый паровой двигатель с высокой степенью сжатия был раньше установлен на небольшом грузовом судне. В паровых турбинах расширяющийся пар вращает оснащенные лопатками роторы. В обоих случаях пар отдает тепловую энергию Паровые двигатели и турбины относятся к двигателям внешнего сгорания так как нагрев происходит вне рабочей камеры, обычно за счет сжигания топлива. Пар производят в котлах, нагреваемых при сжигании нефти или угля. На атомных электростанциях тепло обеспечивают ядерные реакции. Двойное действие В простых паровых машинах пар создает давление на одной стороне цилиндра, заставляя его двигаться. Но в большинстве паровых двигателей обе стороны поршня используются для получения механической энергии. Сначала пар попадает на одну сторону и двигает поршень вперед, а затем на другую сторону, возвращая его назад. Поэтому такие двигатели называются двигателями двойного действия. Рабочий цикл начинается с подачи пара на одну сторону цилиндра через входное отверстие, после чего оно закрывается, а пар, расширяясь, толкает поршень вниз по цилиндру Затем пар поступает на другую сторону поршня, заставляя его возвращаться назад при этом пар на первой стороне выходит через выхлопное отверстие Пар поочередно подается на одну из сторон поршня, а другая сторона автоматически соединяется с выхлопным отверстием. В большинстве паровых двигателей всем рабочим циклом каждого поршня управляет один D-образный клапан. Он скользит взад-вперед, обеспечивая требуемое соединение с входным и выхлопным отверстиями пара. У некоторых больших паровых двигателей отдельные клапаны имеются по обе стороны поршня. Коленчатый вал Возвратно поступательное движение преобразуется во вращательное с помощью шатуна и коленчатого вала. Коленчатый вал - это рычаг, соединенный с тяжелым маховиком а шатун соединяет этот вал с поршнем или его штоком. При движении поршня вперед и назад коленчатый вал вращается, а маховик выравнивает создаваемое вращательное усилие. Температура пара падает при его расширении в цилиндре. Подобный эффект можно наблюдать, используя аэрозольный баллон благодаря расширению газа вытеснителя возникает ощущение прохлады от струи аэрозоля. В простом паровом двигателе двойного действия пар, расширяясь, охлаждает ту часть цилиндра, куда будет подаваться свежий пар. При сильном расширении пара охлаждающий эффект может вызвать большие тепловые потери в двигателе.
Эти потери можно компенсировать за счет сжигания большего количества топлива, но при этом снижается КПД двигателя. Температурные изменения можно уменьшить, если ограничить давление подаваемого в цилиндр пара для снижения степени его расширения. Однако при этом становится меньше и мощность двигателя. Компаунды Эта проблема решается, если позволить пару сначала частично расшириться в малом цилиндре высокого давления. Затем отработавший пар поступает в больший цилиндр низкого давления, где происходит его дальнейшее расширение. Паровые машины с двумя или несколькими такими цилиндрами называются комбинированными двигателями или компаундами. Двигатели с трехкратным расширением - это компаунды с цилиндрами высокого, среднего и низкого давления. Такие двигатели широко применялись на судах, а некоторые немецкие корабли оснащались двигателями с четвертой ступенью расширения. Прямоточные двигатели Прямоточные двигатели позволяют снизить тепловые потери за счет резкого уменьшения колебаний температуры в цилиндре. Пар, подаваемый в разные части цилиндра, расширяется и выпускается через кольцо выхлопных отверстий в его центре. Поэтому цилиндр остается относительно горячим по краям и более прохладным в средней части, где он контактирует с расширенным паром. Тепловые потери введены к минимуму, так как ни одна часть цилиндра не подвергается большим изменениям температуры. Турбины Главным рабочим органом турбины является ротор, оснащенный рядом лопаток. Он находится внутри корпуса с неподвижными лопатками, направляющими поток пара. Пар высокого давления вращает ротор. Пар поступает в корпус турбины через сопла. При выпуске пара его давление падает, и он расширяется. Это приводит к увеличению его скорости, которая может в несколько раз превышать скорость звука. Так, при расширении пара и падении его давления с 12 атм. до 0,5 атм. достигается скорость примерно 1100 м/с. Высокая скорость, большая энергия Движущийся с такой скоростью пар обладает большой энергией, но она не вся легко передается лопастям ротора турбины. Для максимальной передачи энергии пара турбине ее лопатки должны вращаться со скоростью, которая в два раза меньше скорости пара. Но зачастую этого трудно добиться, и потери энергии могут быть большими. Один из путей решения данной проблемы - установка нескольких рядов лопаток турбины, чтобы давление постепенно снижалось на каждом из них. Такие турбины называются компаундированными по давлению. Длина лопаток постепенно увеличивается в направлении от впускного к выпускному каналу, чтобы пару было где расширяться. В некоторых турбинах пар, пройдя один ряд лопаток, без дальнейшего расширения направляется на второй, а иногда и на третий ряд. Турбины такого типа называются компаундированными по скорости. Судовые турбины На одних пароходах турбины используются как привод для электрогенератора, вырабатывающего энергию для электродвигателя, который вращает гребной винт. На других судах турбина вращает гребной винт через ряд редукторов, снижающих скорость вращения до относительно малой величины, требуемой для экономичной работы винта.
Он шел к ней медленно, приближаясь методично, шаг за шагом, и уж тут-то ни о какой случайности не могло быть и речи. Заканчивался XVIII век, век великих открытий. В реестры цивилизации были вписаны такие выдающиеся вехи, как электрическая и паровая машины. Ученые подводили черту под славным столетием. И, пожалуй, никто уже не предполагал, что черту эту придется опустить еще ниже, чтобы дать место одному из величайших открытий в области физики. Хотя основания для таких предположений и были. Ученый, каждый год печатавший по статье, а то и по две-три, вдруг замолчал. И четыре года о том, что он делает, ни слуху ни духу. Это должно было показаться подозрительным или по меньшей мере странным и требовать какого-то объяснения. Вероятно, к Вольте обращались с такого рода вопросами и, быть может, даже упрекали за молчание, потому что, когда он наконец решился заговорить, его первые слова, обращенные к сэру Джозефу Бэнксу, президенту Лондонского королевского общества, были слова оправдания: «После долгого молчания, в котором не смею оправдываться, имею удовольствие сообщить вам несколько поразительных результатов…» — и дальше идет сообщение об открытии, которое и впрямь поразило физиков и которое послужило основой для нескольких новых выдающихся открытий в области электричества
1. Изобретение паровой машины Ползуновым
2. Джемс Уатт. Изобретатель паровых машин
5. Словарь по уборочным машинам и комбайнам
9. История развития ЭВМ. Механические и электромеханические счетные машины
10. Принципы реализации машин БД
12. Машины для дробления, сортировки и мойки каменных материалов
13. Цифровые машины фирмы Xeikon
14. Детали машин
16. Расчет тепловой схемы с паровыми котлами
17. Технология ремонта автомобилей и дорожных машин
18. Детали машин, червячный редуктор
19. Паровые котлы ДКВР /двухбарабанные водотрубные реконструированные/
20. Расчет сборочной машины для сборки детали "Пластина контактная"
26. Вопросы на экзамен по ДМ (детали машин)
28. Детали машин
29. Шпоры по эксплуатации машинно-тракторного парка
30. Словарь по уборочным машинам и комбайнам
31. Проблемы взаимоотношений человека и машины
32. Забытая "Мыслительная машина" профессора А.Н.Щукарева
33. Быстродействующая Электронная Счетная Машина
34. ИТМ и ВТ. Машины 1 и 2 поколений
35. История машинного перевода
36. Паровой броненосный и миноносный флот
37. "Что же такое жизнь, как не машина, которую приводят в движение деньги?"
41. Гидроцилиндры в лесозаготовительных машинах
42. Проблема взаимоотношения человека и машины
43. Машинная память
44. Анализ спроса и повышение видимости в поисковых машинах
46. Расчет паровой турбины Т-100-130, расчет ступени
47. Классификация машин и инструментов для обработки древесины
48. Лабораторные работы по деталям машин
49. Обеспечение качества машин
51. Эксплуатация машинно-тракторного парка
52. Обмотки якорей машин постоянного тока
57. Моделирование состава машинно-тракторного парка
59. Требование безопасности при проектировании машин и механизмов.
61. Рабочая программа по специальности Система машин в лесном хозяйстве и лесной промышленности
62. Система машин для комплексной механизации возделывания гороха в ОАО АПО Нива Шаблыкино
63. Электробур и забойная буровая машина
64. Классификация печатных машин
65. Электронные датчики для полиграфических машин
66. Воздушные агрегаты листовых печатных машин
67. Чистота - залог успеха. Очистка систем увлажнения офсетных печатных машин
68. Машинный перевод
69. Схема СТР – технологии «компьютер – печатная машина»
73. Принципы устройства и работы, электронно-вычислительных машин
74. Гибридные интеллектуальные человеко-машинные вычислительные системы и когнитивные процессы
77. Машины Леонардо
80. Восстановление гидроцилиндров лесных машин
81. Методы обеспечения требуемого качества поверхностного слоя деталей машин
82. Классификация современных паровых турбин
83. Оценка машин и оборудования
84. Безопасность при работе паровых котлов и водонагревательных котлов
85. Адаптация коров к машинному доению
89. Почвообрабатывающие машины
91. Пути повышения производительности сельскохозяйственных машин
92. Сельскохозяйственные и мелиоративные машины
93. Система технічного обслуговування сільськогосподарських машин
94. Технология машинного доения
95. Факторы, влияющие на износ деталей почвообрабатывающих машин
96. Машины для уборки урожая овощных культур
97. Организация и экономическая эффективность создания машинно-технологической станции
98. Бухгалтерский учет и аудит на предприятии ОАО "Вологодский завод дорожных машин"