Библиотека Рефераты Курсовые Дипломы Поиск
Библиотека Рефераты Курсовые Дипломы Поиск
сделать стартовой добавить в избранное
Кефирный гриб на сайте www.za4et.net.ru

Математика Математика

Гиперболическая геометрия

Крючки с поводками Mikado SSH Fudo "SB Chinu", №4BN, поводок 0,22 мм.
Качественные Японские крючки с лопаткой. Крючки с поводками – готовы к ловле. Высшего качества, исключительно острые японские крючки,
58 руб
Раздел: Размер от №1 до №10
Брелок LED "Лампочка" классическая.
Брелок работает в двух автоматических режимах и горит в разных цветовых гаммах. Материал: металл, акрил. Для работы нужны 3 батарейки
131 руб
Раздел: Металлические брелоки
Забавная пачка денег "100 долларов".
Купюры в пачке выглядят совсем как настоящие, к тому же и банковской лентой перехвачены... Но вглядитесь внимательней, и Вы увидите
60 руб
Раздел: Прочее

В 4 веке до н. э. древнегреческий ученый Эвклид свёл накопленные к тому времени математические знания в своём труде «Начала», проанализировав труды своих предшественников, возвысился до создания невиданной по тем временам точно обоснованной теории. Она опирается на ряд определений и аксиом. Исходной точкой его логической системы является положение о том, что выдвигаемые им постулаты очевидны, их справедливость признается всеми несомненной. Имеется пять постулатов: Через две точки проходит единственная прямая. Ограниченную прямую линию можно непрерывно продолжить. Из любой точки как из центра можно описать окружность любого радиуса. Все прямые углы равны между собой. Всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше суммы двух прямых углов, эти прямые пересекаются и притом с той стороны, с которой эта сумма меньше суммы двух прямых углов. Пятый постулат (так называемый постулат «о параллельных») вследствие его сравнительной сложности и малой наглядности вызвал большое число попыток доказать его как теорему, вывести его из остальных аксиом. С первого века до н.э. до 1820 математики пытались доказать справедливость пятого постулата, используя первые четыре, но преуспели лишь в замене его различными эквивалентными допущениями, такими, как «две параллельные линии всюду равно удалены друг от друга» или «любые три точки, не расположенные на одной прямой, принадлежат окружности». Ближе всех подошел к цели иезуит, логик и математик Джироламо Саккери (1667–1733) в своей работе «Эвклид, очищенный от пятен, или Геометрическая попытка установить самые первые начала всей геометрии». Он начал свои исследования с так называемого четырехугольника Саккери (рис. 1), т.е. с четырехугольника BCED, у которого BC = DE, а углы при вершинах C и E прямые. Рисунок 1 Заметив, что углы при вершинах B и D обязательно равны, Саккери рассмотрел поочередно три гипотезы: верхние углы четырехугольника тупые, прямые и острые. Он доказал, что любая из этих гипотез, если ее принять для какого-нибудь одного такого четырехугольника, остается в силе для всех таких четырехугольников. Саккери намеревался обосновать гипотезу о том, что верхние углы прямые, доказав, что любая другая гипотеза приводит к противоречию. Вскоре он отверг гипотезу о тупом угле (и тем самым лишил себя возможности открыть эллиптическую геометрию), поскольку, как и все геометры до 1854, рассматривал второй постулат как утверждение о том, что прямая имеет бесконечную длину, и отказываться от этого постулата он не хотел. Точно также Саккери в конце концов отверг и гипотезу об остром угле, но прежде, чем принять это ошибочное решение, он, сам того не ведая, открыл многие теоремы геометрии, получившей впоследствии название гиперболической. А.Кэли (1821–1895) и Ф.Клейн (1849–1925) прояснили связь между двумя упомянутыми вариантами, разработав в аналитической форме то, что ими было названо «эллиптической» и «гиперболической» геометриями. Евклидова геометрия является предельным случаем каждой из них, и это верно в отношении любой из аналитических формул таких геометрий.

Большие круги (геодезические) на сфере, являющейся поверхностью постоянной положительной кривизны (т.е. сумма углов криволинейного треугольника больше суммы двух прямых.), играют роль прямых и порождают эллиптическую геометрию; аналогичным образом, на поверхности постоянной отрицательной кривизны (сумма углов криволинейного треугольника меньше суммы двух прямых) геодезические круги порождают гиперболическую геометрию. Примером поверхности положительной кривизны является поверхность шара. Условимся считать «прямой» на сфере любую окружность большого круга, т.е. окружность, получаемую при пересечении сферы плоскостью, проходящей через центр шара. Оказывается, что все прямые здесь пересекаются. Следовательно, в такой геометрии не существует параллельных прямых. Можно построить и другие наглядные и поучительные модели эллиптической и гиперболической геометрий, но важно сознавать, что все эти модели содержатся в более общем подходе Римана. В 1854 Б.Риман (1826–1866) заметил, что из неограниченности пространства еще не следует его бесконечная протяженность. Смысл этого утверждения станет яснее, если представить, что в неограниченной, но конечной вселенной астроном в принципе мог бы увидеть в телескоп, обладающий достаточно высокой разрешающей способностью, свой собственный затылок (если отвлечься от небольшой детали, связанной с тем, что свет, отраженный от затылка, достиг бы глаза астронома через тысячи миллионов лет). В своем доказательстве того, что внешний угол при любой вершине треугольника больше внутреннего угла при любой из двух остальных вершин, Евклид неявно использовал бесконечную длину прямой. Из этой теоремы тотчас же следует теорема о том, что сумма любых двух углов треугольника меньше суммы двух прямых углов. Если отказаться от бесконечной длины прямой, то гипотеза Саккери о тупом угле становиться верной и из нее следует, что сумма углов треугольника больше суммы двух прямых. Такое положение дел было давно известно в сферической тригонометрии, где стороны треугольника являются дугами больших кругов. Риман внес эпохальный вклад, распространив представление о конечном, но неограниченном пространстве с двух на три и большее число измерений. Ф.Клейн (1849–1925) первым увидел, как избавить сферическую геометрию от одного из ее недостатков – того, что две лежащие в одной плоскости «прямые» (два больших круга на сфере) имеют не одну общую точку, а две (рис. 2). Рисунок 2 Так как для каждой точки существует одна-единственная точка-антипод (диаметрально противоположная точка), а для любой фигуры существует ее дубликат из точек-антиподов, мы можем, ничем не жертвуя, но многое приобретая, абстрактно отождествить обе точки такой пары, объединив их в одну. Таким образом можно изменить смысл термина «точка», условившись впредь называть «одной точкой» пару диаметрально противоположных точек. Иначе говоря, точки так называемой «эллиптической» плоскости представлены на единичной сфере парами точек-антиподов или диаметрами, соединяющими точки-антиподы. Вся эллиптическая прямая замкнута, как окружность, но, поскольку каждая из ее точек представлена двумя точками-антиподами на единичной сфере, полная длина эллиптической прямой равна половине длины окружности большого круга, т.е

. ее полная длина равна. Карл Гаусс первым подошел к проблеме с современной точки зрения, согласно которой геометрию, отрицающую пятый постулат, надлежит развивать ради нее самой, не ожидая, что при этом возникнет какое-то противоречие. Письма Гаусса к друзьям говорят о том, что к 1816 он преодолел традиционный предрассудок относительно неизбежности противоречия и развил «антиевклидову» геометрию, удовлетворяющую гипотезе Саккери об остром угле. В этом же направлении работали и два других выдающихся ученых того времени – Янош Бойяи и Н.И.Лобачевский. В 1833 году Бойяи опубликовал свои исследования как приложение (по-латыни «»Appe dix») к курсу математики, написанному его отцом Фаркашем Бойяи. В «Аппендиксе» Янош Бойяи в чрезвычайно сжатой форме изложил основы неэвклидовой геометрии. Его отец послал экземпляр «Аппендикса» Карлу Гауссу. В ответном письме Гаусс писал, что не может хвалить работу Яноша, так как это значило бы хвалить самого себя, потому что результаты этой работы почти сплошь совпадали с теми результатами, которые были давно получены им самим. Ответ Гаусса произвел на Яноша Бойяи столь тягостное впечатление, что он даже не поверил ему. Он не знал в это время, что приоритет открытия новой геометрии уже принадлежал русскому математику Лобачевскому. Именно поэтому по сегодняшний день эту геометрию называют геометрией Лобачевского. Один из подходов к построению гиперболической геометрии исходит из некоторых фундаментальных аксиом порядка, справедливых и в евклидовой, но не в эллиптической геометрии. Если считать «точки» исходными понятиями, то запись означает, что точка B лежит «между» точками A и C (это первичное отношение мы принимаем, не пытаясь его определить). Первые четыре аксиомы порядка утверждают, что 1) существует по крайней мере две точки; 2) если A и B – две различные точки, то существует по крайней мере одна точка C, для которой ; 3) эта точка C отлична от точки A и 4) порядок . «Отрезок» AB, по определению, состоит из точек P, для которых , а «луч» A/B («исходящий из A в другую сторону, чем B») – из точек Q, для которых . «Прямая» AB состоит из отрезка AB, точек A, B и двух лучей A/B, B/A. Пятая аксиома утверждает, что если C и D – различные точки на прямой AB, то A лежит на прямой CD (из этой же аксиомы следует, что прямые AB и CD совпадают). Шестая аксиома дает нам точку вне данной прямой, а седьмая, сформулированная М.Пашем (1843–1931), позволяет определить плоскость как множество всех точек, коллинеарных с парами точек на одной или двух сторонах данного треугольника. Большая часть вклада Бойяи связана с теми разделами гиперболической геометрии, которые принадлежат и евклидовой геометрии. Его «абсолютная геометрия» может быть выведена из геометрии порядка, если к последней добавить еще одно фундаментальное отношение, а именно «конгруэнтность». Это отношение определяется пятью аксиомами типа «Если ABC и AB C  – два треугольника, таких, что BC  BC, CA  CA, AB  AB, а D и D – еще две точки, такие, что и BD  BD, то AD  AD».

Еще важнее то, что такая пограничная теория гравитации подчиняется принципам квантовой механики. Термодинамическое состояние черной дыры в рамках этой модели описывается исключительно температурой частиц в её граничном слое. Соответственно, и энтропия чёрной дыры равняется лишь суммарной энтропии этих частиц. Сами же пограничные частицы как раз и являются «элементарными квантами» пространственно-временной геометрии. Рисунок Морица Эшера ');return false;" target="_blank"> Рисунок 1. На рисунке Эшера представлена попытка воспроизвести геометрию гиперболического пространства. Показана его проекция на диск. Все изображенные фигуры геометрически конгруэнтны между собой, то есть, в исходном гиперболическом пространстве их геометрические размеры равны, однако из-за искажающего эффекта его проекции на диск, они кажутся уменьшающимися по мере приближения к краю диска. На самом же деле граница диска равноудалена на бесконечное расстояние от любой точки внутри диска. Аналогичное искажение мы наблюдаем на географических картах в стандартной планиметрической проекции

1. Швейцарская Конфедерация. Три ветви власти

2. Анализ стихотворения А.Ахматовой "И когда друг друга проклинали..."

3. Лабораторная работа №7 по "Основам теории систем" (Решение задачи коммивояжера методом ветвей и границ)

4. Решение смешанной задачи для уравнения гиперболического типа методом сеток

5. Ветви христианства. Суть различий

6. Когда и как называли корабли
7. Когда умер Ростислав Мстиславич?
8. Применение метода ветвей и границ для задач календарного планирования

9. «Когда ум с сердцем не в ладу...»

10. «Любовь – это когда хочется того, чего нет, и не бывает» (по произведениям И.А. Бунина и А.И. Куприна)

11. Что мы говорим, когда говорим "ничего..."

12. Решения смешанной задачи для уравнения гиперболического типа методом сеток

13. Ядерные взрывные технологии: когда с ними лучше, чем без них

14. Когда рука не владыка

15. Что имел в виду Н. Макиавелли, когда в Государстве провозглашал Государь по возможности не должен избегать добра, но и не удаляться от зла

16. Документы, о которых вы должны знать, когда покупаете машину

Фанты "Масло в огонь".
Это настолка для влюбленных пар с различным «стажем» отношений, подойдет в качестве презента на свадьбу или годовщину
1291 руб
Раздел: Игры для взрослых (18+)
Пазл "Россия" (Русский), 100 деталей.
Пазлы - это прежде всего обучающие пазлы. С фотографической точностью прорисованы обитатели и растительный мир самых отдаленных уголков
548 руб
Раздел: Пазлы (100-199 элементов)
Каталка-мотоцикл "МХ".
Новая каталка-мотоцикл "МХ" впечатлит вашего малыша. Он сможет почувствовать себя настоящим байкером, ведь эта каталка не просто
2899 руб
Раздел: Каталки

17. Когда истории не будет…

18. Когда "нет в жизни счастья"

19. Когда, бывает, реклама не помогает… и о типовых опасениях и самооправданиях персонала в таких ситуациях

20. Белые индейцы Америки – потомки чужих богов, когда-то посещавших нашу планету

21. Мужчины не любят, когда женщины возлагают на них ответственность за свой оргазм

22. Мужчины часто выражают себя через секс, когда не могут выразить через эмоции
23. "Постиндустриальное общество" - тупиковая ветвь социального развития?
24. Познание и любовь: вверх по лестнице Иакова

25. Когда правительство бессильно

26. Таллий - "Молодая зеленая ветвь"

27. Стерилизация собак: зачем, когда, как?

28. Анализ снизу вверх и сверху вниз

29. Когда и где появились первые в мире светофоры?

30. Когда перевернута последняя страница романа Джерома Дейвида Сэлинджера «Над пропастью во ржи»

31. Дифференциальные уравнения гиперболического типа

32. Когда младенец много плачет

Набор детской складной мебели Ника "Азбука".
Комплект складной. Подходит для кормления, игр и обучения. Поверхность столешницы ламинированная с нанесением ярких познавательных
1270 руб
Раздел: Наборы детской мебели
Дорожная игра "Голодные бегемотики".
Забавная игра «Голодные бегемотики» не даст соскучиться! Она рассчитана на двух человек, каждый из которых играет за голодного бегемота:
543 руб
Раздел: Игры на ловкость
Швабра для пола "Помощница".
Использование швабры позволяет очистить любые поверхности от пыли и грязи, даже без использования химических средств. Благодаря насадке
314 руб
Раздел: Швабры и наборы

33. Когда на Руси жить хорошо? Циклы русской истории

34. Разделение буддизма на ветви

35. Исполнительная ветвь власти

36. Формирование деятельности административной ветви государственной власти

37. Метод программирования и схем ветвей в процессах решения задач дискретной оптимизации

38. Антенна РЛС – параболоид вращения
39. Классификации гиперболических дифференциальных уравнений в частных производных
40. Атеросклероз аорты и ее ветвей. Хроническая артериальная недостаточность II ст. Стеноз правой общей подвздошной артерии

41. Сценарий физкультурного праздника "Не нужен и клад, когда в семье лад"


Поиск Рефератов на сайте za4eti.ru Вы студент, и у Вас нет времени на выполнение письменных работ (рефератов, курсовых и дипломов)? Мы сможем Вам в этом помочь. Возможно, Вам подойдет что-то из ПЕРЕЧНЯ ПРЕДМЕТОВ И ДИСЦИПЛИН, ПО КОТОРЫМ ВЫПОЛНЯЮТСЯ РЕФЕРАТЫ, КУРСОВЫЕ И ДИПЛОМНЫЕ РАБОТЫ. 
Вы можете поискать нужную Вам работу в КОЛЛЕКЦИИ ГОТОВЫХ РЕФЕРАТОВ, КУРСОВЫХ И ДИПЛОМНЫХ РАБОТ, выполненных преподавателями московских ВУЗов за период более чем 10-летней работы. Эти работы Вы можете бесплатно СКАЧАТЬ.