![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Спектральный анализ и его приложения к обработке сигналов в реальном времени |
Оглавление Введение Постановка проблем, формулировка задач Глава 1. Теоретический анализ существующих алгоритмов спектрального анализа. 1.1. Введение в спектральное оценивание ?1.1.1. Задача спектрального оценивания ?1.1.2. Проблемы в области спектрального оценивания. 1.1.3. Спектральные оценки по конечным последовательностям данных 1.1.4. Общая картина 1.2. Основные определения и теоремы классического спектрального анализа 1.2.2 Операции дискретизации и взвешивания для получения дискретно- временных рядов Фурье. 1.2.3. Анализ эргодичных дискретных процессов. 1.3. Классические методы спектрального анализа. 1.3.1. Введение. 1.3.2. Окна данных и корреляционные окна в спектральном анализе. 1.3.3. Периодограммные оценки спектральной плотности мощности. 1.3.4. Коррелограммные оценки спектра. 1.3.5. Область применения. 1.4. Авторегрессионное спектральное оценивание. 1.4.1. Введение. 1.4.2. Оценивание корреляционной функции - метод Юла-Уалкера. 1.4.3. Методы оценивания коэффициентов отражения. 1.4.3.1. Геометрический алгоритм. 1.4.3.2. Гармонический алгоритм Берга. 1.4.4. Оценивание линейного предсказания по методу наименьших квадратов. 1.4.5. Градиентный адаптивный авторегрессионный метод 1.4.6. Рекурсивный авторегрессионный метод наименьших квадратов 1.5. Спектральное оценивание на основе моделей авторегрессии - скользящего среднего. 1.6. Спектральное оценивание по методу минимума дисперсии. 1.7. Методы оценивания частоты, основанные на анализе собственных значений. 1.7.1. Введение. 1.7.2. Процедуры оценки частоты в пространстве сигнала. 1.7.3. Оценки частоты в пространстве шума. Глава 2. Экспериментальный анализ алгоритмов спектрального анализа. Особенности реализации. Заключение. Выводы. Приложениe А. Смещение периодограммы Уэлча. Приложениe В. Методы и интерфейсы межзадачного системного и межсистемного обмена в среде Wi dows ’95 (Delphi 3.0) Приложениe С. Достоверность полученных оценок спектральной плотности мощности. Приложениe D. Таблица экспериментальных результатов по разрешающей способности методов спектрального анализа. Приложениe E. Таблица и графики «Слабые синусоидальные составляющие» Приложениe F. Дисперсии оценок СПМ как функции частоты. Приложениe G. Таблица наилучших в смысле структурной устойчивости параметров адаптивного градиентного метода. Приложениe Н. Графики оценок СПМ при различных значениях порядка авторегрессионной модели. Приложениe I. Список используемой литературы. Введение Спектральный анализ - это один из методов обработки сигналов, который позволяет охарактеризовать частотный состав измеряемого сигнала. Преобразование Фурье является математической основой, которая связывает временной или пространственный сигнал (или же некоторую модель этого сигнала) с его представлением в частотной области. Методы статистики играют важную роль в спектральном анализе, поскольку сигналы, как правило, имеют шумовой или случайный характер. Если бы основные статистические характеристики сигнала были известны точно или же их можно было бы без ошибки определить на конечном интервале этого сигнала, то спектральный анализ представлял бы собой отрасль точной науки.
Однако в действительности по одному-единственному отрезку сигнала можно получить только некоторую оценку его спектра. К обработке сигналов в реальном масштабе времени относятся задачи анализа аудио, речевых, мультимедийных сигналов, в которых помимо трудностей, связанных непосредственно с анализом спектрального содержания и дальнейшей классификацией последовательности отсчетов (как в задаче распознавания речи) или изменения формы спектра - фильтрации в частотной области (в основном относится к мультимедийным сигналам), возникает проблема управления потоком данных в современных вычислительных системах. Реальность накладывает отпечаток как на сами вычислительные алгоритмы, так и на результаты экспериментов, поднимая вопросы, с которыми не сталкиваются при обработке всей доступной информации. При обработке сигналов обычно приходится решать задачи двух типов - задачу обнаружения и задачу оценивания. При обнаружении нужно дать ответ на вопрос, присутствует ли в данное время на входе некоторый сигнал с априорно известными параметрами. Оценивание - это задача измерения значений параметров, описывающих сигнал . Сигнал часто зашумлен, на него могут накладываться мешающие сигналы. Поэтому для упрощения указанных задач сигнал обычно разлагают по базисным составляющим пространства сигналов. Для многих приложений наибольший интерес представляют периодические сигналы. Вполне естественно, что используются Si и Cos. Такое разложение можно выполнить с помощью классического преобразования Фурье. При обработке сигналов конечной длительности возникают интересные и взаимозависимые вопросы, которые необходимо учитывать в ходе гармонического анализа. Конечность интервала наблюдения влияет на обнаружимость тонов в присутствии сильных шумов, на разрешимость тонов меняющейся частоты и на точность оценок параметров всех вышеупомянутых сигналов. Постановка проблемы, формулировка задачи На настоящее время существует большое количество алгоритмов и групп алгоритмов, которые так или иначе решают основную задачу спектрального анализа: оценивание спектральной плотности мощности, с тем чтобы по полученному результату судить о характере обрабатываемого сигнала.Основной вклад сделан такими исследователями как: Голд Б. (Gold B.), Рабинер Л. (Rabi er L.R.), Бартлетт M. (Bar le M.S.) Однако каждый из алгоритмов имеет свою область приложения. Например, градиентные адаптивные авторегрессионные методы не могут быть применены к обработке данных с быстро меняющимся во времени спектром. Классические методы имеют широкую область применения, но проигрывают авторегрессионным и методах, основанных на собственных значениях, по качеству оценивания. Но в реальном масштабе времени использование последних затруднено из-за вычислительной сложности. Более того, применение каждого из методов обычно требует выбора значений параметров (выбор окна данных и корреляционного окна в классических методах, порядка модели в авторегрессионном алгоритме и алгоритме линейного предсказания, предполагаемого числа собственных векторов в пространстве шума в методе Писаренко) и правильный выбор требует экспериментальных результатов с каждым классом алгоритмов.
Таким образом, имеется следующая задача : На основе существующих алгоритмов проанализировать возможность их применения как к последовательной обработке сигналов в реальном времени, так и к блочной обработке и оценить качество получаемых результатов. Критериями «качества» оценки спектральной плотности мощности в общем случае являются смещение этой оценки и ее дисперсия. Однако аналитическое определение этих величин наталкивается на определенные математические трудности и в каждом конкретном случае на практике просто визуально совмещают графики нескольких реализаций спектральной оценки и визуально определяют смещение и дисперсии к функции частоты. Те области совмещенных графиков спектральных оценок, где экспериментально определенное значение дисперсии велико, будет свидетельствовать о том, что спектральные особенности видимые в спектре одной реализации не могут считаться статистически значимыми. С другой стороны, особенности совмещенных спектров в тех областях, где эта дисперсия мала, с большой достоверностью могут быть соотнесены с действительными составляющими анализируемого сигнала. Из вышесказанного сформулируем следующие подзадачи: I. теоретическое и практическое исследование алгоритмов блочной обработки II. анализ классических алгоритмов блочной обработки всей последовательности в части применения окон данных и корреляционных окон III. анализ алгоритмов обработки сигналов в реальном масштабе времени Кроме этих теоретических проблем, существует ряд практических вопросов, специфичных для обработки сигналов в реальном времени. Среди них выбелим : Необходимость в «одновременном» выполнении следующих основных этапов обработки данных: 1.) Непосредственное получение последовательности входных данных (цифровые отсчеты аудио-сигнала, речевого сигнала). 2.) Обработка получаемых отсчетов сигнала. 3.) Представление обработанной информации 4.) Возможность контролировать процесс обработки информации Ограничение длительности интервала выборки поступающих данных вычислительными ресурсами Ограничение длительности интервала выборки характером сигнала Если первый вопрос очевиден в рамках обработки данных в реальном времени, то второй и третий вопросы требуют осмысления причин этих ограничений. К сформулированным выше задачам добавим : IV. задачу построения схемы управления обработкой данных в реальном времени, основанной, в силу первой проблемы, на параллельных вычислениях и протоколах взаимодействия и синхронизации; V. экспериментальный анализ по второй проблеме, то есть исследование влияния вычислительных ресурсов и методов оцифровки данных на максимально допустимую длину интервала выборки; VI. анализ длительности интервала выборки, исходя из характера сигнала. В качестве основного подхода к решению проблем и исследования применим методологию математического моделирования и вычислительного эксперимента. Экспериментальные входные данные будем формировать следующим образом для задачи анализа алгоритмов блочной обработки всей последовательности отсчетов формируем дискретизированные отсчеты данных тест-сигнала из суммы комплексных синусоид и аддитивных окрашенных шумовых процессов, сформированные посредством пропускания белого шума через фильтр с частотной характеристикой типа приподнятого косинуса или окна Хэмминга.
В подавляющем большинстве игр анимация поставляется уже в готовом виде просчитанных заранее роликов. В Spore такой подход не работал - ведь разработчики не знали заранее, каких существ придумают пользователи (учитывая, что еще до запуска Spore пользователи "Лаборатории существ" создали почти 4 млн. объектов[Для сравнения: сегодня нам известно чуть более 1,5Pмлн. видов живых существ.], это знание им вряд ли помогло бы). Однако движок Spore способен проанализировать любой созданный в рамках игры объект - в случае живых существ, например, понять, где у них руки и ноги, - и на основании этого анализа сгенерировать необходимую анимацию в реальном времени. Для игрового процесса это, вообще говоря, мелочь - вряд ли игра сильно потеряла бы, не будь в ней такой возможности. Но на вылизывание этой мелочи ушла не одна тысяча человеко-часов, благо подавляющее большинство сотрудников РайтаP- разработчики, на дизайнерах в этот раз решили сэкономить - ведь по замыслу Уилла основную часть контента "нарисуют" сами пользователи. Они и нарисовали. 10 Райт отказался отвечать на вопросы о своем следующем проекте
1. Методы и приемы решения задач
2. Применение спектральной сейсморазведки для решения задач инженерной геологии
4. Лабораторная работа №6 по "Основам теории систем" (Решение задачи о ранце методом ветвей и границ)
5. Построение решения задачи Гурса для телеграфного уравнения методом Римана
9. Анализ экономических задач симплексным методом
11. Решение задач линейного программирования симплекс методом
12. Решение задачи линейного программирования графическим методом
13. Графический метод решения задач линейного программирования
14. Решение задачи линейного программирования симплексным методом
15. Решение задач по экономическому анализу
16. Использование эвристических и экономико-математических методов при решении задач управления
17. Решение задач симплекс-методом
18. Решения задач линейного программирования геометрическим методом
19. Решение задач по курсу "семейное право"
20. Формирование структуры электронного учебника и решение задач на ней
21. Решение задач линейного программирования
25. Решение задач по прикладной математике
26. Применение движений к решению задач
28. Методы принятия управленческого решения
29. Пример решения задачи по разделу «Переходные процессы»
30. Дидактический материал для организации решения задач с педагогически запущенными детьми
31. Пути повышения эффективности обучения решению задач
32. Психоаналитические идеи и представления в терапевтическом анализе
33. Дифференциальные уравнения движения точки. Решение задач динамики точки
35. Применение Информационной Системы «GeoBox» для решения задач автоматизации строительства скважин
36. Линейное программирование: решение задач графическим способом
37. Методы поиска технических решений
41. Решение задач по дисциплине "Страхование"
42. Решение задач по управленческому учету
43. Примеры решения задач по правоведению
44. Excel: решение задач с подбором параметров
45. Примеры решения задач по программированию
46. Разработка формата хранения данных программ и решение задач
47. Решение задач исследования операций
48. Решение задач линейного программирования
49. Решение задач нелинейного программирования
50. Решение задач оформление экономической документации
51. Решение задач с помощью ЭВМ
52. Решение задачи с помощью математической модели и средств MS Excel
53. Решение задачи с помощью программ Mathcad и Matlab
58. Решение задач по курсу статистики
59. Функционально-графический подход к решению задач с параметрами
60. Методы оптимизации при решении уравнений
61. Методы планирования управленческих решений
62. Методы принятия управленческих решений для конкретной проблемы
63. Экспертные методы оценки управленческого решения
64. Обучение решению задач из раздела "Основы алгоритмизации и программирования"
66. Схематическое моделирование при обучении решению задач на движение (младшие школьники)
67. Решение задач по теплотехнике
68. Проектирование подстанции 110/6 кВ с решением задачи координации изоляции
69. Решение задач по теоретической механике
73. Примеры решения задач по статистике
74. Формирование цен, ее состав и решенные задачи
75. Анализ экономических задач оптимизации
76. Особенности решения задач в эконометрике
77. Решение задач на переливание на бильярдном столе
78. Решение задач по эконометрике
79. Решение задачи о коммивояжере
80. Анализ хозяйственной деятельности строительной организации как объект анализа
81. Динамическое представление сигналов
82. Представление сигналов в базисе несинусоидальных ортогональных функций
83. Спектральный метод анализа сигналов
84. Методы атомно-эмиссионного спектрального анализа
85. Решение смешанной задачи для уравнения гиперболического типа методом сеток
89. Методы решения некорректно поставленных задач
90. Спектральный анализ сигналов электрооптического рассеяния света в аэродисперсной среде
91. Other (Новые представления о задачах и методах гипербарической
92. Эвристические методы решения творческих задач
93. Применение спектрального анализа
95. Применение спектрального анализа
97. Принятие решений методом анализа иерархий
98. Решение прикладных задач численными методами
99. Аналитический метод в решении планиметрических задач
100. Решение и постоптимальный анализ задачи линейного программирования