Библиотека Рефераты Курсовые Дипломы Поиск
Библиотека Рефераты Курсовые Дипломы Поиск
сделать стартовой добавить в избранное
Кефирный гриб на сайте www.za4et.net.ru

Экономика и Финансы Экономика и Финансы     Экономико-математическое моделирование Экономико-математическое моделирование

Сущность теории игр

Карабин, 6x60 мм.
Размеры: 6x60 мм. Материал: металл. Упаковка: блистер.
44 руб
Раздел: Карабины для ошейников и поводков
Мыло металлическое "Ликвидатор".
Мыло для рук «Ликвидатор» уничтожает стойкие и трудно выводимые запахи за счёт особой реакции металла с вызывающими их элементами.
204 руб
Раздел: Ванная
Гуашь "Классика", 12 цветов.
Гуашевые краски изготавливаются на основе натуральных компонентов и высококачестсвенных пигментов с добавлением консервантов, не
179 руб
Раздел: 7 и более цветов

ПЛАН ВВЕДЕНИЕ 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ИГР 1.1 Основные понятия и критерии теории игр 1.2 Стратегии теории игр 1.2.1 Смешанные стратегии 1.2.2 Мажорирование (доминирование) стратегий 1.3 Игры с природой 2. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ СМЕШАННЫХ СТРАТЕГИЙ 2.1 Постановка задачи 2.2 Описание алгоритма решения ГЛАВА 3. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ИГР С ПРИРОДОЙ 3.1 Постановка задачи 3.2 Решение задач игр с природой ЗАКЛЮЧЕНИЕ СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ АННОТАЦИЯ Тема курсового проекта, представленная в пояснительной записке, звучит как «Теория игр». Объём данной пояснительной записки к курсовому проекту по дисциплине «Исследование операций» составляет 27 страниц, количество используемых источников 8. Данная пояснительная записка содержит 3 (два) раздела, содержащих следующую информацию: теоретические основы теории игр, описание стратегий теории игр, а также описание практического применения указанных стратегий в исследовании операций. ВВЕДЕНИЕ На практике часто появляется необходимость согласования действий фирм, объединений, министерств и других участников проектов в случаях, когда их интересы не совпадают. В таких ситуациях теория игр позволяет найти лучшее решение для поведения участников, обязанных согласовывать действия при столкновении интересов. Теория игр все шире проникает в практику экономических решений и исследований. Ее можно рассматривать как инструмент, помогающий повысить эффективность плановых и управленческих решений. Это имеет большое значение при решении задач в про­мышленности, сельском хозяйстве, на транспорте, в торговле, особенно при заключении договоров с иностранными партнерами на любых уровнях. Так, можно определить научно обоснованные уровни снижения розничных цен и оптимальный уровень товарных запасов, решать задачи экскурсионного обслуживания и выбора новых линий городского транспорта, задачу планирования порядка организации эксплуатации месторождений полезных ископаемых в стране и др. Классической стала задача выбора участков земли под сельскохозяйственные культуры. Метод теории игр можно применять при выборочных обследованиях конечных совокупностей, при проверке статистических гипотез. Обычно теорию игр определяют как раздел математики для изучения конфликтных ситуаций. Это значит, что можно выработать оптимальные правила поведения каждой стороны, участвующей в решении конфликтной ситуации. В экономике, например, оказался недостаточным аппарат математического анализа, занимающийся определением экстремумов функций. Появилась необходимость изучения так называемых оптимальных минимаксных и максиминных решений. Следовательно, теорию игр можно рассматривать как новый раздел оптимизационного подхода, позволяющего решать новые задачи при принятии решений. 1.ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ИГР Основные понятия и критерии теории игр Игра - упрощенная формализованная модель реальной конфликтной ситуации. Математически формализация означает, что выработаны определенные правила действия сторон в процессе игры: варианты действия сторон; исход игры при данном варианте действия; объем информации каждой стороны о поведении все других сторон.

Одну играющую сторону при исследовании операций может представлять коллектив, преследующий некоторую общую цель. Однако разные члены коллектива могут быть по-разному информированы об обстановке проведения игры. Выигрыш или проигрыш сторон оценивается численно, другие случаи в теории игр не рассматриваются, хотя не всякий выигрыш в действительности можно оценить количественно. Игрок - одна из сторон в игровой ситуации. Стратегия игрока - его правила действия в каждой из возможных ситуаций игры. Существуют игровые системы управления, если процесс управления в них рассматривается как игра. Платежная матрица (матрица эффективности, матрица игры) включает все значения выигрышей (в конечной игре). Пусть игрок 1 имеет т стратегий Аi,а игрок 2 – стратегий Bj . Игра может быть названа игрой т ґ . Представим матрицу эффективности игры двух лиц с нулевой суммой, сопроводив ее необходимыми обозначениями (табл. 1.1). Таблица 1.1. Игрок 2 Игрок 1 В1 В2 В ai А1 а11 а12 а1 a1 А2 a21 a22 а2 a2 Аm аm1 аm2 аm am bj b1 b2 b В данной матрице элементы аij - значения выигрышей игрока 1 - могут означать математическое ожидание выигрыша (среднее зна­чение), если выигрыш является случайной величиной. Величины ai,и bj, – соответственно минимальные значения элементов аij по строкам и максимальные - по столбцам. Их содержательный смысл будет отражен ниже. В теории игр не существует установившейся классификации видов игр. Однако по определенным критериям некоторые виды можно выделить. Количество игроков. Если в игре участвуют две стороны, то ее называют игрой двух лиц. Если число сторон больше двух, ее относят к игре п игроков. Наибольший интерес вызывают игры двух лиц. Они и математически более глубоко проработаны, и в практических приложениях имеют наиболее обширную библиографию. Количество стратегий игры. По этому критерию игры делятся на конечные и бесконечные. В конечной игре каждый из игроков имеет конечное число возможных стратегий. Если хотя бы один из игроков имеет бесконечное число возможных стратегий, игра является бесконечной. Взаимоотношения сторон. Согласно данному критерию игры делятся на кооперативные, коалиционные и бескоалиционные. Если игроки не имеют права вступать в соглашения, образовывать коалиции, то такая игра относится к бескоалиционным; если игроки могут вступать в соглашения, создавать коалиции - коалиционной. Кооперативная игра - это игра, в которой заранее определены коалиции. Характер выигрышей. Этот критерий позволяет классифицировать игры с нулевой и с ненулевой суммой. Игра с нулевой суммой предусматривает условие: «сумма выигрышей всех игроков в каждой партии равна нулю». Игры двух игроков с нулевой суммой относят к классу антагонистических. Естественно, выигрыш одного игрока при этом равен проигрышу другого. Примерами игр с нулевой суммой служат многие экономические задачи. В них общий капитал всех игроков перераспределяется между игроками, но не меняется. К играм с ненулевой суммой также можно отнести большое количество экономических задач. Например, в результате торговых взаимоотношений стран, участвующих в игре, все участники могут оказаться в выигрыше.

Игра, в которой нужно вносить взнос за право участия в ней, является игрой с ненулевой суммой. Вид функции выигрышей. По этому критерию игры подразделяются на матричные, биматричные, непрерывные, выпуклые, сепарабельные и т.д. Поясним суть некоторых из них. Матричная игра - конечная игра двух игроков с нулевой суммой. В общем случае ее платежная матрица является прямоугольной (см. табл. 1). Номер строки матрицы соответствует номеру стратегии, применяемой игроком 1. Номер столбца соответствует номеру стратегии игрока 2. Выигрыш игрока 1 является элементом матрицы. Выигрыш игрока 2 равен проигрышу игрока 1. Матричные игры всегда имеют решения в смешанных стратегиях. Они могут быть решены методами линейного программирования. Биматричная игра - конечная игра двух игроков с ненулевой суммой. Выигрыши каждого игрока задаются своей матрицей, в которой строка соответствует стратегии игрока 1, а столбец - стратегии игрока 2. Однако элемент первой матрицы показывает выигрыш игрока 1, а элемент второй матрицы - выигрыш игрока 2. Для биматричных игр так же, как и для матричных, разработана теория оптимального поведения игроков. Если функция выигрышей каждого игрока в зависимости от стратегий является непрерывной, игра считается непрерывной. Если функция выигрышей выпуклая, то и игра - выпуклая. Если функция выигрышей может быть разделена на сумму произведений функций одного аргумента, то игра относится к сепарабельной. Количество ходов. Согласно этому критерию игры можно разделить на одношаговые и многошаговые. Одношаговые игры заканчиваются после одного хода каждого игрока. Так, в матричной игре после одного хода каждого из игроков происходит распределение выигрышей. Многошаговые игры бывают позиционными, стохастическими, дифференциальными и др. Информированность сторон. По данному критерию различают игры с полной и неполной информацией. Если каждый игрок на каждом ходу игры знает все ранее примененные другими игроками на предыдущих ходах стратегии, такая игра определяется как игра с полной информацией. Если игроку не все стратегии предыдущих ходов других игроков известны, то игра классифицируется как игра с неполной информацией. Мы далее убедимся, что игра с полной информацией имеет решение. Решением будет седловая точка при чистых стратегиях. Степень неполноты информации. По этому критерию игры подразделяются на статистические (в условиях частичной неопределенности) и стратегические (в условиях полной неопределенности). Игры с природой часто относят к статистическим играм. В статистической игре имеется возможность получения информации на основе статистического эксперимента, при котором вычисляется или оценивается распределение вероятностей состояний (стратегий) природы. С теорией статистических игр тесно связана теория принятия экономических решений. Получив некоторое представление о существующих подходах к классификации игр, можно остановиться на оценках игры. Рассмотрим матричную игру, представленную матрицей выигрышей mґ , где число строк i = а число столбцов j = (см. табл.1). Применим принцип получения максимального гарантированного результата при наихудших условиях.

Вера это не только религия. Это вера в себя, в других людей, в существование истины и справедливости. Существует континуум веры от обычной уверенности в других до беззаветной преданности некоей божественной сущности. Последние достижения поведенческих наук, например, экспериментальной экономики и теории игр, демонстрируют, что вера неотъемлемое человеческое свойство. Вера основа взаимодействия между людьми; и не случайно на склонность к рискованному доверию обращают внимание такие разные философские системы, как экзистенциальное христианство Серена Къеркегора и современные теории переговоров в процессе экономического взаимодействия. Обе эти философские системы подчеркивают, как важно действовать на основании внутренней, субъективной убежденности, внутреннего импульса. Можно сказать, что современные поведенческие науки заново открывают важность веры, о которой религии знают испокон веков. Я бы сказал, что это новое открытие демонстрирует, что сам акт наличия веры может быть отделен от веры в некие божественные сущности. И вот во что я верю: нас поддерживает какая-то сильная рука не божественное провидение или контроль, но тот очень простой и реальный факт, что все мы выжили

1. Общие основы теории и методики спортивных игр

2. Природа и человек. Современная теория происхождения человека

3. Задачи и примеры их решения по теории вероятности

4. Природа социального конфликта, основные теории

5. Теориям самоорганизации - синергетика, теория изменений и теория катастроф

6. Теория анархии и теория правового государства применительно к России
7. Предмет и метод экономической теории
8. Нетрудовые теории стоимости: теория предельной полезности, теория факторов производства, теория спроса и предложения

9. Единая теория Вселенной или теория всего

10. Методы экономической теории и их применение

11. Сущность и значение банковского кредита в современных экономических условиях

12. Аналитическая химия, ее предмет, задачи, значение и основные понятия. Организация аналитического контроля в государстве. Классификация методов анализа. Направления развития аналитической химии

13. Сущность теневой экономики ее формы и социально-экономические последствия

14. Теория игр

15. Теория взаимодействий: общие закономерности взаимодействий участников соревнований в единоборствах и спортивных играх

16. Теория игр

Сушилка для посуды P&C "Лилия", двухъярусная.
Наша уникальная двухъярусная сушилка позволит сушить или хранить большое количество посуды, при этом сэкономит полезную площадь на столе
576 руб
Раздел: Настольные
Набор мисок с синими крышками, 5 предметов.
Разные по размерам и объему миски незаменимы на любой кухне, в них можно не только готовить и хранить салаты и закуски, но также красиво
349 руб
Раздел: Наборы
Пластины для стирки белого и цветного белья FeedBack, 30 штук.
Пластины для стирки белого и цветного белья это настоящая революция среди средств для стирки. Не содержит фосфатов! Пластины необходимо
640 руб
Раздел: Стиральные порошки

17. Теория игр. Корпоративные игры

18. Теория игр

19. Модель олигополии в контексте теории игр

20. О некоторой общей схеме формирования критериев оптимальности в играх с природой

21. Специфика задач, средств и методов обучения игре в волейбол на учебно-тренировочных занятиях с детьми 13-15 лет

22. Дидактические игры как средство развития экологических знаний о живой природе у детей старшего дошкольного возраста с умственной отсталостью
23. Психологическая сущность игры дошкольника
24. Олимпийские игры в античности

25. Начальный этап обучения игры на аккордеоне

26. Что говорят мифы и легенды об истории Олимпийских игр

27. Игра на ловкость "Змейка"

28. Вычисление вероятности игры в КРЭКС(кости)

29. Программирование логической игры на visual basic

30. Лабораторная работа №7 по "Основам теории систем" (Решение задачи коммивояжера методом ветвей и границ)

31. Лабораторная работа №4 по "Основам теории систем" (Послеоптимизационный анализ задач линейного программирования)

32. Лабораторная работа №2 по "Основам теории систем" (Решение задач линейного программирования симплекс-методом. Варианты разрешимости задач линейного программирования)

Коробка для хранения елочных украшений (64 ячейки).
Удобная складная коробка на молнии для хранения и транспортировки хрупких елочных украшений. Стенки коробки выполнены из полупрозрачного
573 руб
Раздел: Более 10 литров
Говорящий плакат "Веселые уроки".
Играй и учись с котёнком Тошей! Нажимай на картинки – изучай цифры, формы и цвета, знакомься с животными, слушай песенки мультяшек
501 руб
Раздел: Электронные и звуковые плакаты
Глобус детский зоогеографический, с подсветкой, 210 мм.
Глобус детский зоогеографический, на пластиковой подставке, с подсветкой. Диаметр: 210 мм.
856 руб
Раздел: Глобусы

33. Математические игры и головоломки

34. Теория графов. Задача коммивояжера

35. Характеристика и значение деловых игр в медицине

36. Большие и малые ИГРЫ. Классификация

37. Роль дидактических игр в развитии элементарных математических представлений дошкольника

38. Влияние подвижных игр для развития физических качеств у юных легкоатлетов (10-14 лет)
39. Словесно-дидактические игры по теме «Знакомство с экзотическими плодовыми комнатными растениями»
40. Ролевые игры на уроках английского языка

41. Ролевые игры на уроках английского языка на основной ступени обучения в средней школе

42. Роль игры в развитии ребенка

43. Игра как фактор развития познавательных процессов младших школьников

44. Дидактическая игра как средство развития познавательного интереса учащихся на уроках математики

45. События на Кавказе в контексте "Большой игры"

46. Насилие в компьютерных играх и его влияние на психику человека

47. Игры взрослых: социально - психологические аспекты изучения

48. Т.Парсонс: Аналитический реализм и понимание задач социологической теории (Доклад)

Карандаши акварельные, с кисточкой, 24 цвета.
Шестигранный корпус покрыт лаком на водной основе. Карандаши заточенные. Длина карандаша: 176 мм. Очень мягкие, не крошатся, цвета яркие,
431 руб
Раздел: Акварельные
Горка Qiaoqiao "Яблоня" с баскетбольным кольцом.
Горка "Яблоня" для малыша оборудована баскетбольным кольцом. Боковые панели выполнены в виде яблонек. Описание: - легко и просто
4290 руб
Раздел: Горки
Ластик+точилка "Compact Monsters", 1 отверстие.
Ластик+точилка. Стальное лезвие, острое и устойчивое к повреждению, идеально подходит для графитовых и цветных карандашей. Мягкий
324 руб
Раздел: Ластики

49. История развития олимпийских игр

50. Казахские национальные конно-спортивные игры

51. Олимпийские игры

52. Методика обучения дошкольников элементам спортивным игр. Овладение элементами игры в баскетбол детьми старшего дошкольного возраста

53. Олимпийские игры 1908 года

54. Олимпийские игры Древней Греции
55. Подвижные игры
56. Задачи и методы теории знания

57. Отчёт по экономической игре "Никсдорф дельта"

58. Задачи по теории принятия решений

59. Деловые игры в поцессе обучения

60. Деятельность Пьера де Кубертена по возрождению Олимпийских игр современности

61. Распутиниада: большая политическая игра

62. Компьютерные игры

63. Д.Б. Эльконин. Психология игры

64. Хасинто Бенавенте. Игра интересов

Беговел "Funny Wheels Basic" (цвет: розовый).
Беговел - это современный аналог детского велосипеда без педалей для самых маленьких любителей спорта. Удобный и простой в
2168 руб
Раздел: Беговелы
Кружка "Средний палец".
Оригинальная керамическая кружка.
509 руб
Раздел: Оригинальная посуда
Увлекательная настольная игра "Геометрика", новая версия.
Геометрия станет одним из самых любимых предметов, если начать её изучение с «Геометрики». Это простая и увлекательная настольная игра.
392 руб
Раздел: Карточные игры

65. Языковая игра на газетной полосе

66. Математика как языковая игра

67. Игра и игрушка в сфере повседневной культуры

68. Игра как театральная социальная деятельность

69. Небольшой экскурс в историю игр

70. Греческие игры
71. О "праздной мозговой игре" в "Санкт-Питер-Бурхе" Б. А. Пильняка
72. Мотив игры и театра в романе "Война и мир"

73. Бесконечные антагонистические игры

74. Математические игры

75. Теория объясняющая природу возникновения гравитации

76. Решение одного класса игр на матроидах

77. Экономические игры

78. Программа обучения игре на балалайке

79. Классификация приемов игры и штрихов на домре

80. Ролевая игра

Брелок с кольцом "Lord of the Rings" Wearable One Ring.
Брелок с тем самым Кольцом из известного произведения жанра фэнтези романа-эпопеи "Властелин Колец" английского писателя Дж. Р.
1590 руб
Раздел: Металлические брелоки
Кастрюля из нержавеющей стали 5508-2, 2,1 л, 18 см.
Объем: 2,1 л. Диаметр: 18 см. Глубина: 10,5 см. Толщина стали: 0,3 мм. Кастрюля из высококачественной нержавеющей стали. Специальная
422 руб
Раздел: До 3 литров
Тетрадь на кольцах "Main", А5, 120 листов, клетка, черный.
Формат: А5 (148х218 мм). Количество листов: 120. Линовка: клетка. Крепление: кольца. Внутренний блок: кремовая бумага (офсет), 70
380 руб
Раздел: Свыше 100 листов

81. Игры наших детей

82. Использование русских народных (подвижных) игр в детском саду

83. Дидактическая игра на этапе повторения знаний

84. Игры и игровые ситуации на уроках природоведения и их образовательная функция

85. Популярные японские игры

86. Развлекательные и познавательные игры на уроках английского языка в младших классах
87. Сценарии игр
88. Театрализованные игры

89. Дидактическая игра на этапе повторения знаний

90. Сценарии игр

91. Игра в опасной зоне или искусство уживаться

92. Ролевые игры как средства развития психологической компетентности в юношеском возрасте

93. Игры животных

94. Учитесь мыслить играя

95. Игра в опасной зоне или искусство уживаться

96. Значение игр для преодоления эмоциональных трудностей дошкольников

Двусторонние клеевые подушечки UHU Fix.
Двухсторонние клеящие подушечки с высокой клеящей способностью для постоянного крепления. Позволяют прикрепить практически любой нетяжелый
340 руб
Раздел: Универсальный
Набор салатниц с крышками "Loraine", 3 штуки.
В наборе: 3 салатницы и 3 крышки. Форма: квадратная. Материал: стеклокерамика, пластик. Цвет: белый. Рисунок: оранжевые цветы. Объем: 785
562 руб
Раздел: Наборы
Приспособление для формирования тефтелей с начинкой.
Частенько балуете домашних аппетитными домашними тефтелями с вкусной начинкой, но только Вам известно, сколько сил и времени на это
308 руб
Раздел: Прочее

97. Развитие личности молодого человека средствами интеллектуальных и творческих игр

98. Психология азартных игр

99. Игра и личность: первые шаги


Поиск Рефератов на сайте za4eti.ru Вы студент, и у Вас нет времени на выполнение письменных работ (рефератов, курсовых и дипломов)? Мы сможем Вам в этом помочь. Возможно, Вам подойдет что-то из ПЕРЕЧНЯ ПРЕДМЕТОВ И ДИСЦИПЛИН, ПО КОТОРЫМ ВЫПОЛНЯЮТСЯ РЕФЕРАТЫ, КУРСОВЫЕ И ДИПЛОМНЫЕ РАБОТЫ. 
Вы можете поискать нужную Вам работу в КОЛЛЕКЦИИ ГОТОВЫХ РЕФЕРАТОВ, КУРСОВЫХ И ДИПЛОМНЫХ РАБОТ, выполненных преподавателями московских ВУЗов за период более чем 10-летней работы. Эти работы Вы можете бесплатно СКАЧАТЬ.