![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Закон Ома электропроводности металлов как фундаментальное следствие нетеплового действия электрического тока |
В.В. Сидоренков, МГТУ им. Н.Э. Баумана Введение. При взаимодействии металлов с электромагнитным полем главную роль играет их высокая электропроводность, поэтому важным аспектом анализа указанного взаимодействия является выяснение физической природы отклика проводящей среды на наличие в ней электрического тока, нетривиально проявляющего себя за счет своего нетеплового действия. Впервые эксперименты по исследованию нетеплового влияния электрического тока на физические свойства металлов были проведены Г. Вертгеймом еще в 1844 г. По удлинению проволочных образцов различных металлов при постоянной внешней механической нагрузке в условиях пропускания электрического тока (j ~ 107 108 А/м2) либо только при термическом воздействии и одной и той же температуре образца определялись соответственно модули упругости G1 и G2 исследуемого материала. Наличие разности ΔG = G1 – G2 служило доказательством дополнительного нетеплового действия электрического тока на величину модуля упругости металла. Эти исследования считаются уникальным физическим экспериментом, и именно Вертгейму принадлежит приоритет открытия явления упорядоченного механически напряженного состояния металла, возникающего в процессе электропроводности. В настоящее время указанный феномен исследуется в основном с целью применений на практике электропластического разупрочнения металлов под действием электрического тока высокой плотности j ~ 108 109 А/м2 . Однако дискуссия о природе этого сложного и многогранного явления продолжается и отражена во многих публикациях (например, в ). В частности, в данной работе дается ответ на физически принципиальный вопрос о связи гальваномеханических деформаций (нетепловых деформаций под действием тока) с электрическим полем в металле при электропроводности. Уравнение энергетического баланса процесса электропроводности в металлах. Оставаясь в рамках теории Друде электрической проводимости металлов , рассмотрим уравнение энергетического баланса для металлического проводника при наличии в нем электрического тока в следующем приближении: . (1) Здесь представлены зависящие от плотности тока объемные плотности тепловой энергии wТ, потенциальной энергии электрического поля we и кинетической энергии дрейфового движения электронов wj . Тепловая энергия, выделяющаяся с течением времени в единице объема проводника с электрическим током, описывается законом Джоуля-Ленца: , (2) где σ – удельная электрическая проводимость материала. Эта энергия равна работе сторонних сил, постоянно совершаемой над электронами проводимости в их дрейфовом движении, причем приращение внутренней энергии проводника проявляется в его нагреве. Объемную плотность электрической энергии /2, связанную с присутствием в проводнике при электропроводности электрического поля, найдем, учитывая закон Ома и поле электрического смещения в таких условиях , где e – относительная диэлектрическая проницаемость, e0 – электрическая постоянная. В результате энергия электрической поляризации проводника под действием тока запишется в виде . (3) Физический смысл коэффициента τ определяется с учетом теоремы Гаусса: , где r – объемная плотность электрического заряда, из уравнения непрерывности , решение которого описывает закон релаксации заряда в проводящей среде.
Следовательно, есть постоянная времени релаксации электрического заряда (далее ) для данного материала. Поскольку электрический ток представляет собой упорядоченное движение носителей заряда ненулевой массы, то в проводнике присутствует также кинетическая энергия дрейфового движения этих зарядов. Тогда для электронов проводимости металла получим: , (4) где учтены выражения для вектора плотности тока и удельной электрической проводимости . Здесь me и e - масса и заряд электрона, и - концентрация и дрейфовая скорость электронов проводимости, - среднее время свободного пробега электронов между столкновениями. В итоге уравнение энергетического баланса процесса электропроводности в металле (1) запишется следующим образом: . (5) Видно, что при стационарном токе, в отличие от первого слагаемого , линейно нарастающего во времени, два других, и от времени не зависят и соотносятся друг с другом в соответствии с численными значениями временных коэффициентов и . Определяемый аналитически коэффициент для металлов при комнатной температуре по порядку величины равен 10–13 10–14 с, а значение , cогласно , примем ~ 10– 6 с. Несмотря на то, что wj численно меньше на 7-8 порядков, тем не менее, это слагаемое важно физически, так как отвечает за магнитную энергию проводника с током, и только оно сохраняется при переходе к сверхпроводимости, когда . Поскольку в рамках классической электродинамики физический механизм возникновения магнитного поля тока объяснятся лишь формальным релятивизмом (истинный магнетизма – это спиновый магнетизм), то далее этот вопрос не обсуждается. Таким образом, в случае нормального (несверхпроводящего) металла энергетика процесса электропроводности количественно в основном определяется тепловой и электрической энергиями, поставляемыми источником стороннего поля, причем физический механизм их реализации един и обусловлен передачей ионам кристаллической решетки проводника энергии упорядоченного движения электронов проводимости. Деформационная поляризация металлов под действием электрического тока. В контексте рассматриваемого вопроса главной целью является выяснение природы электрической энергии , запасаемой в проводнике с током. Прежде всего, отметим, казалось бы, парадоксальную ситуацию, когда из закона Ома электропроводности металлов (где - вектор плотности тока, а - вектор электрической напряженности) следует странный на первый взгляд вывод о том, что данный закон подчиняется архаичному принципу Аристотелевой механики, согласно которому v ~ F. Очевидно, что в рамках общепринятой механики Ньютона парадокс отсутствует лишь при условии равенства нулю суммарной силы действия на электроны проводимости, то есть существует некая ответная сила, компенсирующая действие поля сторонних сил источника электрического тока. Таким образом, необходимо выяснить, прежде всего, механизм возникновения поля этой некой силы в металлическом проводнике. Покажем, что закон Ома электропроводности обусловлен откликом среды на нетепловое воздействие со стороны электрического тока и проявляет себя в виде электрической поляризации металла.
Представления о векторе электрической поляризации вещества как дипольном моменте единицы объема в линейном приближении, прямо пропорциональном напряженности электрического поля: ( - плечо диполя), приводят к выражению , (6) позволяющему описать электрическое поле в металлической среде при ее поляризации; металл здесь рассматривается как диэлектрик с предельно большой восприимчивостью. В общем случае соотношение (6) является тензорным, но применять тензорную запись в наших рассуждениях нет необходимости. В однородной проводящей среде значение объемной плотности заряда при квазистационарной () электропроводности близко к нулю, поэтому процесс электрической поляризации металла в таких условиях будет протекать в локально электронейтральной среде, когда . Физически поле E(lj) обусловлено законом сохранения импульса в системе “электронный газ – ионный остов” кристаллической решетки проводника, где при наличии тока “центры масс” положительных и отрицательных зарядов в атомах смещаются относительно друг друга, создавая тем самым деформационную поляризацию среды. При этом индуцируемое в проводнике электрическое поле уравновешивает поле сторонних сил и в указанных условиях результирующая сила, действующая на дрейфующие со скоростью электроны проводимости, равна нулю, что и определяет линейную зависимость j ~ E. Аналогией этому может служить, например, установившееся движение твердой частицы при падении ее в вязкой жидкости в поле силы тяжести. Целесообразно отметить, что вывод об отсутствии в однородном проводнике с током объемного электрического заряда следует из предположения справедливости при электропроводности закона Ома, когда j ~ E. При этом игнорируется воздействие собственного магнитного поля тока на движущиеся носители заряда посредством магнитной компоненты силы Лоренца , величина которой в такой ситуации является квадратичной функцией тока. Здесь - вектор магнитной индукции, зависящий от соответствующей напряженности, m - относительная магнитная проницаемость среды, m0 - магнитная постоянная. Это обстоятельство должно приводить к нарушению локальной электронейтральности среды () за счет ухода вглубь проводника части электронов проводимости, где их кулоновское отталкивание компенсируется действием магнитного поля тока. Данный вопрос подробно рассмотрен в работах , поэтому ограничимся только этим замечанием. Однако именно таким нарушением электронейтральности можно объяснить наблюдаемую в условиях, близких к изотермическим, квадратичную нелинейность вольтамперной характеристики медного проводника на постоянном токе , аппроксимируемую строгой аналитической зависимостью , в которой квадратичное по току слагаемое заметно проявляет себя при плотности тока j ~ 108 А/м2 и более. Поэтому при обычной плотности тока j &l ;&l ; 108 А/м2 эта нелинейность не может существенным образом повлиять на результаты наших рассуждений, что подтверждают также и выводы проведенного выше анализа уравнения энергетического баланса процесса электропроводности (5). Сопоставляя соотношение (6) с законом Ома , получаем формулу указанного выше динамического смещения “центров масс” разноименных зарядов , (7) вызывающего деформационную электрическую поляризацию металлического проводника с током.
Якоби создал гальванические цинк-медные элементы (элемент Даниэля-Якоби) и детально изучил процессы, происходящие в них. Е. Х. Ленц и А. С. Савельев внесли значительный вклад в развитие теории поляризации. В тесной связи с научными достижениями русских ученых электрохимиков развивалась электрохимическая наука в Украине. Первые экспериментальные исследования по электрохимии провел в Украине профессор Харьковского университета В. И. Лапшин в 1858 году. Он изучал действие электрического тока на ряд химических соединений, подвергая их электролизу. С 1860 года начинаются работы исследователей электрохимиков в Киеве, Харькове, Одессе. Но особенно интенсивно электрохимическая наука в Украине стала развиваться в 20-х годах прошлого столетия. Ученые и инженеры Киева, Харькова, Днепропетровска и других городов создали центры научных исследований. Они стали работать над такими проблемами электрохимии, как теория электродных потенциалов, коррозия металлов, антикоррозионные покрытия, кинетика электродных процессов, исследования в области химических источников тока
1. Сравнение темпов развития ЭВМ с темпами эволюции человека
3. Великобритания (расширенный вариант реферата 9490)
4. Налоговые системы развитых стран и их сравнение с налоговой системой России
10. Русско-испанские сравнения по синтаксису
12. Реферат по научной монографии А.Н. Троицкого «Александр I и Наполеон» Москва, «Высшая школа»1994 г.
13. Контакты с внеземными цивилизациями в древности
15. Сравнение операционных систем /DOS, UNIX, OS (2, WINDOWS/ (Write)
16. Проблема выбора средней величины
20. Сущность тоталитаризма в сравнении фашистской Италии и нацистской Германии
21. Техническая эксплуатация автомобилей. Расчет вероятности безотказной работы деталей ЦПГ
25. Защита деталей приборов от коррозии
26. Маркировка деталей и сборочных единиц
27. Психология труда (Обзорный реферат по психологии труда)
28. Технология соединения деталей радиоэлектронной аппаратуры
29. Несколько рефератов по Исламу
30. Сравнение таинства крещения в исторической перспективе
31. Датчики физических величин
32. Сравнение цивилизации, формации и культуры
33. "Камю", "Сартр", "Шопенгауэр", "Ясперс", "Фромм" (Рефераты, доклады по философии)
34. Сравнение философии Лао-Цзы и Конфуция
35. Реферат по информационным системам управления
36. Технико-экономическое сравнение систем Адаптивного и Массового производств
37. Экономика науки в России в сравнении с Индией и другими странами
41. Реферат по книге Н. Цеда Дух самурая - дух Японии
42. Сравнение «Грозы» и «Бесприданницы» А. Н. Островского
43. Сравнение произведений А. Н. Островского «Бесприданница» и «Гроза»
44. Анализ-сравнение рассказов Л. Андреева “Бездна” и М. Горького “Страсти-мордасти”
45. "Медный Всадник": два героя
46. Статья о поэме А. С. Пушкина "Медный всадник"
47. Образы помещиков и сравнение их с Чичиковым
48. Мастерство художественных деталей в рассказах Чехова
50. Максимилиан Волошин: жизнь, творчество, контакты
51. Сравнение рекламных роликов
52. Абсолютна величина дiсного числа. Властивостi абсолютних величин
53. Проверка гипотезы о независимости двух случайных величин для любого типа шкал
57. Сравнение экономики Польши и Болгарии
58. Как эффективно организовать телефонные контакты с потребителями
60. Об электропроводности металлов
61. Предельные эквивалентные электропроводности ионов в водных растворах
62. Анализ и сравнение правовых систем (семей) современности
64. Как написать хороший реферат?
65. Сравнение психики животных и человека
66. Теория сравнений
67. Методика установления деловых контактов и завязывания знакомств
68. Эффективная частота контактов с рекламным сообщением
69. Чувственные масла и смазки, улучшающие контакт
73. Реферат кондитерское изделие
74. Технологические требования к конструкции штампованных деталей (часть 1)
75. Техническая экплуатация автомобилей. Расчет вероятности безотказной работы деталей ЦПГ
76. Измерение неэлектрических величин
77. Скорость бега и способность к воспроизведению ритма в сравнении с результатами в беге с барьерами
78. Реферат по статье Гадамера Неспособность к разговору
79. Определение электропроводности лизина
80. Измерения оптоэлектронными многоканальными системами деталей с загрязнённой поверхностью
82. Зависимость граничной цены от величины дохода
83. Финансовые коэффициенты, классификация и функции, формирование базы для сравнения коэффициентов
84. Реферат Евро
85. Определение современной и будущей величины денежных потоков
89. Реферат о прочитаной на немецком языке литературы
90. Автоматизированное проектирование деталей крыла
91. Реферат для выпускных экзаменов
92. Реферат по ОБЖ, Тема: СПИД
93. ДЫХАНИЕ - реферат за 9-й класс
94. Медные сплавы
95. Сравнение отчета о движении денежных средств с российской системой учета и требованиями МСФО
97. “Медный изумруд” Казахских степей