![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Динамічні процеси та теорія хаосу |
Курсова робота на тему: Динамічні процеси та теорія хаосу. ПЛАНВступ 1. Відображення і потоки 1.1. Три образи хаосу 1.2. Аттрактор Лоренца і хаос в рідині 1.3. Універсальне відображення для нелінійних коливань 1.4. Стохастичні аттрактори 2. Хаотичні коливання 2.1. Перемежана і перехідний хаос 2.2. Консервативний хаос 3. Фізичні експерименти з хаотичними системами 3.1. Хаос в пружній безперервній середі 3.2. Тривимірні пружні стрижні і струни 3.3. Хаос в матричному друкуючому пристрої 3.4. Нелінійні ланцюги 4. Фрактальні властивості хаосу 4.1. Фрактали 4.2. Фрактали і хаос Висновок Список використаної літератури Вступ Для багатьох вивчення динаміки почалося і закінчилося другим законом Ньютона F = mA. Якщо задані сили, що діють між частками, а також початкові положення і швидкості часток, то за допомогою достатнього великого комп'ютера можна передбачити рух або розвиток системи для будь-якого скільки завгодно пізнього часу. Проте поява великих комп'ютерів і швидких комп'ютерів не привела до обіцяної нескінченної передбаченості в динаміці. Було виявлено що рух деяких дуже простих динамічних систем не завжди можна передбачити на великий інтервал часу. Такі рухи були названі хаотичними, і їх дослідження привабило в динаміку деякі нові математичні ідеї. Побутове поняття хаосу дуже древньо і часто асоціюється з безладним або некерованим фізичним станом або поведінкою людей. Хаос лякає. Правда, завжди залишається надія дізнатися потаєні сили або причини цього хаосу або пояснити, чому виявляються непередбачуваними події, на вигляд випадкові. Отже, основна мета даної роботи полягає у вивченні моделей хаосу. 1. Відображення і потоки 1.1 Три образи хаосу Простим прикладом динамічної моделі, що виявляє хаотичну поведінку є логістичне рівняння, або рівняння зростання популяції: x 1 = ax - bx2 (1.1) Перший член в правій частці описує зростання або народження, а нелінійний член ответствен за обмеження зростання, зв'язане, наприклад, з обмеженістю енергетичних або харчових ресурсів. Якщо нехтувати нелінійним членом (b = 0), то можна виписати явне вирішення лінійного рівняння, що виходить: x 1 = ax ; x =x0 a (1.2) Це рішення стійке при а &l ; 1 і нестійкий при а &g ; 1 . У останньому випадку з лінійної теорії виходить нереалістичне передбачення необмеженого зростання. Нелінійну модель (1.1) зазвичай переписують в безрозмірному вигляді x 1 = x (1 – x ) (1.3) При &g ; 1 є дві точки рівноваги (тобто х = х (1 - х)). Для з'ясування стійкості відображення х 1 = f (х ) слід обчислити величину нахилу f’ (x) у точці спокою. Якщо f’ &g ; 1, точка спокою нестійка. При 1 &l ; &l ; 3 логістичне рівняння (1.3) має дві точки спокою: х = 0, ( — 1) / ; при цьому початок координат — нестійка крапка, а друга точка спокою стійка. Проте при = 3 нахил при x = ( — 1)/ перевищує одиницю (f' = 2 - ) і обидві точки рівноваги стають нестійкими. При значеннях параметра , увязнених між 3 і 4, це просте різницеве рівняння описує безліч багатоперіодичних і хаотичних рухів. При = 3 стає нестійким стаціонарне рішення, але залишається стійким бицикл або двоперіодична орбіта.
Ця орбіта показана на мал. 1.1. Величинах x повторюється через кожну ітерацію. Рис 1.1. Можливі типи вирішень логістичного рівняння (1.3). Вгорі – стаціонарний рух з періодом 1; посередині - рух з періодом 2 і періодом 4; внизу – хаотичний рух. При подальшому збільшенні двоперіодична орбіта стає нестійкою і виникає цикл з періодом 4, який унаслідок біфуркації швидко замінюється циклом з періодом 8 при ще більших значеннях . Цей процес подвоєння періоду продовжується до тих пір, поки не досягає значення : = 3,56994. . Поблизу цього значення послідовність значень параметра, при яких відбуваються подвоєння періоду, підкоряється точному закону (1.4) Це граничне відношення називається числом Фейгенбаума — на ім'я фізики, який виявив ці властивості даного відображення. При значеннях , що перевищують :, можуть виникати хаотичні ітерації, тобто поведінка моделі на великих часах не укладається в рамки простого періодичного руху. У інтервалі : &l ; &l ; 4 також присутні певні вузькі інтервали s , для яких існують періодичні орбіти. Хаотична орбіта логістичного відображення показана на мал. 2 за допомогою залежності х 1 від х . Рис. 1.2. Графічне вирішення різницевого рівняння першого порядку. Роль цього відображення не лише в тому, що воно дає зразок хаосу. Було показано, що і інші відображення виду хп 1 = f (x ), де f (x) — квадратична або складніша функція, поводяться приблизно так само, задовольняючи тому ж закону (1.4). Явище подвоєння періоду або регулярної зміни бифуркационного параметра називають універсальною властивістю певних класів одновимірних різницевих моделей динамічних процесів. Подвоєння періоду і відношення Фейгенбаума (1.4) виявляються в багатьох фізичних експериментах. Це означає, що в багатьох безперервних еволюційних процесах зведення до різницевого рівняння за допомогою перетину Пумнкаре приводить до квадратичного відображення (1.1); звідси слідує важлива роль відображень в дослідженні диференціальних рівнянь. 1.2 Аттрактор Лоренца і хаос в рідині У 1963 р. фахівець з фізики атмосфери на ім'я Е.Н. Лоренц з Массачусетсського технологічного інституту запропонував просту модель теплової конвекції в атмосфері. Рідина, що підігрівається знизу, легшає і спливає, а важча рідина опускається під дією гравітації. Такі рухи часто організовуються в конвективні валики, подібні до рухів рідини в тривимірному торі, показаному на рис. 1.3. Рис. 1.3. Вгорі – схема ліній струму рідини в конвективному вічку при стаціонарному русі; внизу – одновимірна конвекція в кільцевій трубці під дією сили тяжіння і градієнта температури.У математичній моделі конвекції, яку запропонував Лоренц, використовуються три змінні (х, біля, z), що описують стани системи. Змінна х пропорційна амплітуді швидкості, з якою рідина циркулює в рідкому кільці, а змінні біля і z відображають розподіл температури по кільцю. Так звані рівняння Лоренца можна формально отримати з рівняння Навьє — Стоксу, рівняння в приватних похідних механіки рідини. У безрозмірному виді рівняння Лоренца записуються таким чином: (1.5)Параметри і ? пов'язані відповідно з числами Прандтля і Релея, а третій параметр d описує геометрію системи.
Відзначимо, що єдині нелінійні члени — це хz і ху в другому і третьому рівняннях. При = 10 і d = 8/3 (набір параметрів, що віддається перевага фахівцями в цій області) і при ? &g ; 1 є три положення рівноваги, з яких те, яке розташоване на початку координат, є нестійкою седловой крапкою (рис. 1.4). Рис 1.4. Локальні схеми руху поблизу трьох крапок рівноваги для рівнянь Лоренца (1.5). 1.3 Універсальне відображення для нелінійних коливань Структура відображення. Рівняння (1.6), званий гамильтониан породжує рівняння руху (1.7) де необурена частота нелінійних коливань визначається вираженням (1.8) Ці рівняння є диференціальними. Дискретна форма рівнянь руху у вигляді кінцевих різниць переважно для аналізу можливості появи стохастичності. Тому слід знатися на тому, як від рівнянь (1.7) перейти до їх різницевої форми і яка структура останніх. Допустимо, що виділена деяка послідовність моментів часу 0, 1, 2 ., і систему (1.7) удається звести до дискретної системи яка зв'язує значення змінних (I ?) в двох послідовних моментах часу. Зручно ці рівняння записати в такій формі: (1.9) де індекс опущений, межа стоїть замість індексу 1 і g1, g2 — функції, залежні від виду обурення. Надалі оператор (mod 2H) при фазі будемо, як правило, опускати. Форма (1.9) є настільки спільною, що не містить ніякої інформації. У гамильтоновском випадку відображення (1.9) повинне зберігати міру, тобто повинна виконуватися умова (1.10) Це означає, що Для того, щоб система (1.9) знайшла який-небудь сенс, в неї слід вкласти фізичний зміст. Хай змінна I є дією. Її зміна має бути пов'язане з деякою неадіабатичністю руху. У адіабатичному випадку, наприклад, sI експоненціально мало. У неадіабатичному випадку вважатимемо, що зміна дії в основному відбувається в деякій області часу s , в якій порушується адіабатична інваріантність. Повна зміна дії системи накопичується підсумовуванням різних окремих змін sI. Хай Т є характерний інтервал часу між двома послідовними областями порушення адіабатичної інваріантності. Це має на увазі нерівність &g ; s (1.11) яке відразу вирішує питання про те, як природним чином ввести відображення (1.9). Якщо виконана умова (1.11), то існує природна структура відображення (1.9). Вона включає послідовність моментів { k}, розділених інтервалами ~ між областями, де відбувається помітна зміна дії. Рівняння відображення виходять в результаті зшивання цих змін на двох послідовних інтервалах. Вся відмінність в змінах дії поміщена у вигляді функцій g1, g2. Ці прості міркування дозволяють без великих втрат виключити деякі непотрібні ускладнення. По-перше, вважатимемо, що s &g ; 0, тобто зміна дії відбувається миттєво (удар). З фізичної точки зору це означає, що часовий інтервал s зміни дії менше всіх характерних часів завдання. По-друге, рахуватимемо інтервали між моментами k постійними. Гамільтонін описаної системи може бути представлений в (p, x) -пространстве у вигляді . (1.12) На осцилятор з гамильтонианом H0 (p, x) діють миттєві поштовхи через постійні інтервали часу Т. Между поштовхами рух є вільним і передбачається відомим. Тому зшивання рішень на двох різних інтервалах може бути проведена точно.
Это просто моё эмоциональное предчувствие, предпочтение. Мне нравятся разные люди в разных одеждах, их разная пища. Я большой путешественник. Что же касается убеждений, то церковь, например, проповедует всепрощение. Я считаю, что разум покинул людей ещё в первые дни Французской революции. А большинство писателей, фантастов в том числе, сейчас часто пишут о том, что наш разум во многом зависит от эмоций. Эмоции же, которые бушуют в нынешнюю эпоху неопределенности, ведут к хаосу. Теория хаоса сейчас очень популярна. Так что о гуманизме, прагматизме или расизме говорить пока сложно. Может быть, мир вообще исчезнет с лица Земли в результате какого-то катаклизма. К сожалению, очень много физических факторов, которые способны спровоцировать глобальную катастрофу. Но люди очень мало делают, чтобы её избежать. Чтобы мир выжил, надо ему помогать». Ответы Р.Шекли лучше, чем ответы Э.Тополя уже тем, что Р.Шекли не пытается произвести на окружающих впечатление, будто он является носителем некоего сокровенного знания о будущем, которым старается поделиться с избранными им для того, чтобы избранные спасли мир, подобно тому, как такое впечатление производит (возможно сам того не осознавая) Э.Тополь то своим обращением к Б.Березовскому, то к читателям “АиФ”
1. Вплив важких металів на ріст, розвиток та інші фізіологічні процеси у рослин
2. "Дискретні та неперервні динамічні системи в економіці" в MAPLE 7
3. Спеціальні економічні зони та їх роль в залученні іноземних інвестицій
4. Теория хаоса и ее взаимосвязь с естествознанием
5. Наукові школи та теорії в зарубіжній кримінології
10. Організація навчально-виховного процесу та педагогічна думка у другій половині XVII—XVIII століття
11. Теплотехнічні процеси і установки
12. Проблеми адаптації і дезадаптації студентів до навчального процесу та феномен стресу
13. Аналіз біографії Гітлера за неофрейдистськими теоріями та теоріями Фройда
14. Форми вияву психіки, психічні процеси, стани і властивості
15. Окисно-відновні реакції і електрохімічні процеси в гальванічних елементах. Електродні потенціали
16. Міграційні процеси та зміни етнічного складу населення України наприкінці XVIII - початку XX ст.
17. Українські космогонічні легенди та перекази про різні трави та квіти
18. Економічні аспекти розробки та впровадження єдиного інформаційного простору університету
19. Психологічні якості працівників та їх використання у процесі менеджменту
20. Цивільний та арбітражний процес
25. Форми єврокредитів та динаміка їх застосування
26. Методологічні та біологічні проблеми біоніки
27. Тропічні та субтропічні плодові рослини
28. Специфічні та неспецифічні дерматити молочної залози
29. Договірні відносини процесу аудиту та аудиторських послуг
32. Екологічні проблеми України та шляхи їх розв’язання
34. Докази та доказування в кримінальному процесі
35. Загальні засади та нормативно-правова база організації навчального процесу
36. Захист прав і свобод людини та карний процес
37. Обвинувачений, його права та обов’язки в кримінальному процесі
41. Теорія розподілу влади на законодавчу, виконавчу і судову та її реалізація в Україні
42. Участь експерта та спеціаліста у кримінальному процесі
43. Цивільний позивач та відповідач у кримінальному процесі
45. Англійські та російські фразеологічні одиниці з сурядними сполучниками
46. Інформатика та інформаційні процеси
47. Нові комп’ютерні технології обробки та класифікації інформації у контрольно-аудиторському процесі
48. Технологічні аспекти теорії проектування інформаційних систем
49. Економічні реформи 50-х-60-х рр. в СРСР: плани та реальність
50. Київська Русь - теорії походження та розвиток
51. Проблема визнання УНР Францією та Великою Британією в грудні 1917 - січні 1918 років
53. Теорії та концепції харчування людини
57. Анатомо-фізіологічні особливості сечової та ендокринної систем в дітей
58. Гігієнічні вимоги до розміщення і планування населених пунктів та житлових приміщень
62. Інформаційне відображення лікувально-діагностичного процесу в ендокринологічній клініці
67. Обмінні процеси в організмі щурів при отруєнні цезієм і стронцієм та зміні кислотно-лужного стану
69. Реографічні показники церебрального кровообігу у підлітків: залежність від статі, віку та соматотипу
73. Європейський союз: процес формування та перспективи розвитку
76. Україна та інтеграційні процеси
78. Мотивіаційні теорії та принципи підвищення продуктивності праці
79. Поняття мотивації та класифікація мотиваційних теорій
80. Проблеми теорії та практики управління проектами у виробничій системі
81. Структура теорії управління та сучасні тенденції її розвитку
82. Методологічні підходи до означення суті, змісту та основних напрямів полікульткрної освіти
83. Основні категорії та етапи навчального процесу студента
84. Психолого–педагогічні проблеми спілкування викладача та студента
85. Суть процесу навчання та засоби його активізації
92. Основи теорії Леві-Брюля та Леві-Строса
93. Політична соціологія в складі соціологічної теорії - питання та історичний розвиток
94. Соціальні та психолого-педагогічні проблеми молоді
95. Визначення густини твердого тіла та рідини гідростатичним зважуванням
96. Розрахунок та технічні характеристики електромагнітного реле
97. Ефект Доплера в класичній та релятивійській теорії
98. Спортивна орієнтація та відбір в процесі багаторічного тренування лижників і гонщиків
99. Методологічні та гносеологічні основи вивчення феномена безсмертя