![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Промышленность и Производство
Техника
Алгоритмическая загадка молекулярной эволюции |
Алгоритмическая загадка молекулярной эволюции А. Колесников После того, как ученые научились читать генетические тексты наследственной информации, записанные в молекулах ДНК и РНК, выяснилось одно странное обстоятельство. Вопреки ожиданиям, основанным на классической дарвиновской теории эволюции, генетические тексты выглядели вовсе не случайными последовательностями "букв", а, напротив, оказалось, что в них присутствует строгая упорядоченность. К всеобщему удивлению выяснилось, что на самом низком и фундаментальном уровне организации живой материи наследственный код насыщен многочисленными повторяющимися фрагментами и палиндромами. Напомним, что палиндромом называется фраза или слово, которое одинаково читается с обеих сторон. Например, фраза "А роза упала на лапу Азора" без учета пробелов между словами будет читаться одинаково в обоих направлениях. Упорядоченность генетических текстов трудно объяснить на основе классической дарвиновской теории эволюции. Краеугольным камнем дарвинизма является постулат о том, что естественный отбор векторизует случайную мутационную изменчивость. То есть изначальным сырьем для природной селекции выступают "опечатки", время от времени самопроизвольно появляющиеся в наследственных кодах. Но тогда и сами коды должны выглядеть именно как результат многочисленных случайных опечаток. В этом случае последовательность букв в генетических текстах должна быть сравнима с той, которую оставила бы на экране маленькая собачка, потоптавшись по клавиатуре компьютера. Но на самом деле твердо экспериментально установлено, что это не так. Следовательно, в природе действует некий иной механизм формирования и эволюционной трансформации наследственного кода. Иной, но какой же? Сторонники теории номогенеза, разработанной академиком Л. С. Бергом в начале двадцатого века, склонны интерпретировать феномен упорядоченности генетических текстов как доказательство существования некой номогенетической закономерности, управляющей биологической эволюцией извне. Правда, природа самой этой закономерности так и остается загадкой. Известно, что тексты наследственной информации передаются от родителей к потомкам путем копирования. Русский ученый-генетик Тимофеев-Ресовский, тот самый, о котором Даниил Гранин написал биографическую повесть "Зубр", называл этот процесс конвариантной матричной редубликацией. Может быть, разгадка как раз и кроется в механике этой конвариантной редубликации. Что если предположить, что наследственные тексты кодируют, в том числе и возможность своего собственного изменения. То есть тексты наследственной информации и являются носителями той закономерности, которая проявляется в их итоговой упорядоченности. Для того, чтобы в общих чертах представить себе, как это может происходить, рассмотрим следующую алгоритмическую модель. В начале сгенерируем случайную последовательность какой-то произвольной длины , состоящую из нерегулярно чередующихся четырех знаков (обозначим их - 1,2,3,4). Например, 1214434. В конце последовательности запишем ноль как признак завершения кода. Затем разместим эту последовательность на клеточном поле по следующим правилам (см.
рисунок а). Первый символ запишем в некоторую, заранее заданную клетку. Затем, в зависимости от того, какой именно символ вписан в текущую клетку, следующий элемент последовательности будем заносить в одну из четырех ячеек, соседних с данной. Если в текущую клетку вписана единица, следующий символ разместим в правой соседней клетке; если в текущую клетку вписана двойка, следующий символ разместим в соседней верхней клетке; если в клетку вписана тройка, то следующий символ разместим в соседней левой клетке; и, наконец, если в текущую клетку вписана четверка, то следующий символ впишем в соседнюю нижнюю клетку. Точно так же поступим со следующим символом, и будем продолжать этот процесс, пока не дойдем до нуля (признака окончания последовательности) или не наткнемся на конец поля. Если в процессе записи очередная клетка окажется уже занята, то будем писать наверх, "забивая" предыдущий знак. Информационные макромолекулы РНК и ДНК, как и любые другие полимерные молекулы, в реальных физических условиях имеют определенную пространственную форму, которая во многом определяется порядком следования мономеров в первичной информационной цепочке. Описанный выше алгоритм записи одномерной последовательности знаков на клеточное поле будем считать некой очень общей аллегорией процесса образования пространственной структуры информационной полимерной молекулы. На следующем этапе нашей алгоритмической игры смоделируем процесс копирования исходного информационного кода. Но в качестве матрицы будем использовать не первичную линейную последовательность символов, а ее вторичную "пространственную" структуру, размещенную на клеточном поле. В природе копирование информационных биополимеров осуществляется специализированным ферментом. Особым образом организованная белковая молекула прикрепляется к молекулярным цепочкам ДНК или РНК в точке, отмеченной специальным кодом инициации, и символ за символом синтезирует ее копию. При этом если, например, на исходной матричной молекуле какой-то ее участок свернут в петлю, то существует шанс, что копирующий фермент проскочит это место или, напротив, "зациклится" и повторит его несколько раз. То есть, в принципе, вторичная пространственная структура молекул ДНК или РНК может активно влиять на содержание их дочерних копий. Так, например, "комплементарные палиндромы, способные к образованию вторичной структуры ДНК, пригодны быть горячими точками множественных и одиночных мутаций, делеций и вставок. Наиболее существенно, что комплементарные палиндромы и инвертированные повторы способны обеспечивать блочные перестройки в ходе эволюции генов"1. Иными словами, чем сложнее и причудливей будет закручена исходная молекула, тем больше вероятность различных "курьезов" в процессе ее воспроизведения. К чему все это в совокупности может привести, попытаемся разобраться, продолжив нашу алгоритмическую аллегорию. Копирования информационной матрицы будем моделировать следующим образом. Пусть вначале, по аналогии с природным процессом репликации, воображаемый фермент или считывающая головка "садится" на помеченную ячейку клеточного поля, в которой всегда располагается первый символ.
После этого в первую позицию дочерней воспроизводимой последовательности поместим символ, находящийся в этой исходной помеченной клетке. Дальнейшие правила считывания примем следующими. Головка может переместиться в одну из четырех (левую, верхнюю, правую, нижнюю), соседних с данной, но не пустых ячеек. Выбор одного из возможных вариантов будем считать равновероятным. Для усиления сходства с реальной матричной редубликацией можно запретить воображаемой считывающей головке сразу возвращаться в предыдущую позицию. Это как бы придаст процессу считывания определенную однонаправленность, но смысл результатов от этого меняется незначительно. При описанных правилах поведения считывающей головки строго упорядоченные последовательности будут копироваться однозначно, а хаотичные, сложно скрученные, напротив, будут допускать поливариантное или конвариантное воспроизведение. На рисунке б представлен один из возможных путей прочтения последовательности, изображенной на рисунке а. На примере видно, что дочерняя копия уже более упорядочена, по сравнению с исходной, так как содержит повтор. Компьютерное моделирование описанной алгоритмической игры убеждает в том, что в подавляющем большинстве (за исключением вырожденных случаев) исходные случайные последовательности символов после нескольких циклов конвариантного воспроизведения превращаются из хаотичных в строго упорядоченные. На врезке приведено три примера компьютерного "прогона" модели. 3442144441422141312314141 344441214114141 3444412141214121412114141 34444121214121414121412121412141214114141 3444412144443 344441244124443 344441444144443 344441444144443 344441444144443 111432121324213142331414442 11121434141 111414341434141 11141434341 11141434143414111 1114143414341434111 111414341434311 111414341411 1114143414143414111 111414341434143414111 11141434143414111 1114143414143414111 111414341434143414111 1114143434341434111 1114143434143434343414343414343434143414111 1114143414111 111414341434143414111 1114143414111 11141414111 11141414111 11141414111 1213424223224133414443333333344441143112343321433 4224433333333444413334433234433144334432333144443 433333333444433 433333333444433 433333333444433 По ним можно судить о том, как из абсолютно случайных наборов символов постепенно сами собой возникают полностью симметричные палиндромы или строго периодические последовательности, очень напоминающие те, которые встречаются в реальных генетических текстах. Таким образом, если предположить, что основная причина мутационной изменчивости на молекулярном уровне организации жизни находится не вне, а внутри самих генов, то загадка молекулярной эволюции представляется логически разрешимой. Разумеется, речь идет лишь о весьма отдаленной алгоритмической аналогии, поэтому я не буду настаивать на том, что открыл механизм возникновения упорядоченности на молекулярно-генетическом уровне организации живой материи (впрочем, и сильно протестовать тоже не буду :). Список литературы 1. Проблемы теории молекулярной эволюции/ Ратнер В.А., Жарких А.А., Колчанов Н.А. и др. - Новосибирск: Наука, 1985. С 196
Можно лишь сделать вывод, что, когда мы имеем дело с природой, всякое возможно. И забывать эту простую истину значит жить в мире фантазий. Должно быть, правы в своем подходе криптозоологи: скорее выше, чем ниже вероятность того, что крупные неизвестные виды до сих пор существуют, до сих пор продолжают ускользать от нашего взора в море, на суше или в воздухе. Это научное приключение еще ожидает продолжение. Глава 5. Загадки человеческой эволюции Это случилось вечером 30 ноября 1974 года. В эфиопской пустыне Афар отмечал свою победу американский антрополог Дональд Джохансон. Утром того дня он нашел окаменелый фрагмент, возможно, человеческого черепа, который вместе с другими костями составил около 40 процентов от древнего женского скелета. Кости эти были, как он считал, самыми ранними из когда-либо найденных останков человека или человекоподобного существа. Джохансон пребывал в радостном возбуждении: два сезона вел он поиски в этом районе, движимый чувством уверенности, что непременно найдет здесь нечто важное
1. Молекулярный механизм эволюции
2. Молекулярные основы эволюции, дифференцировки развития и старения
4. Строение и эволюция вселенной
9. Эволюция биологических механизмов запасания энергии
11. Происхождение человека. Эволюция человека. Теории и гипотезы
12. Проблема происхождения и эволюции человека
13. Антропология: эволюция и адаптация
14. Комплексный анализ современных ландшафтов и их эволюции на территории Катангского плато
15. Налоги: типы, эволюция. Теория налогообложения
16. Эволюция системы европейской безопасности от СБСЕ к ОБСЕ
17. Особенности становления и эволюции мирового и отечественного дизайна
18. Эволюция чувства свободы (по произведениям Пушкина)
19. Развитие науки: революция или эволюция? Философские модели постпозитивизма
20. Возникновение денег и их эволюция в России
21. Основы алгоритмизации и алгоритмические языки
25. Эволюция государственного и политического строя России
26. Процесс мышления. Человеческий мозг – тайна эволюции
27. Методы молекулярной спектрометрии в анализе объектов окружающей среды
28. Ученье Гербера Спенсера об эволюции
29. Проблема происхождения и эволюции человека
30. Высоко-молекулярные соединения
31. Роль рынка в эволюции рекламы
33. Сущность и эволюция развития рынка ценных бумаг, его функции и структура
34. Современные деньги: сущность, формы, эволюция
35. Государственное регулирование в рыночных системах: эволюция, модели, тенденции
36. Теории денег и их эволюция
37. Эволюция человека и его социальной структуры
41. Эволюция российской государственности: от сословно-представительной монархии к абсолютизму
42. Ранние этапы эволюции гоминид
43. Принципы социальной эволюции
44. Стоунхендж - загадка висячих каменів
45. Приближается эра молекулярной электроники
46. Энергия и эволюция культуры
47. Эволюция exercice классического танца
48. Эволюция художественного сознания
49. Загадка первобытной культуры
51. Загадки и тайны древнего Египта
53. Загадка женской души (По очерку Н.С.Лескова «Леди Магбет Мценского уезда»)
59. Загадка популярности любовной лирики Ахматовой
60. Эволюция пейзажа в лирике Пушкина
61. Эволюция философских взглядов Л.Н. Толстого
62. Новая модель эволюции вселенной
63. Общая теория эволюции и матрешечная парадигма строительства мироздания
64. Эволюция и происхождение болезней
65. Эндокринология (молекулярные механизмы секреции инсулина и его действия на клетки)
66. Эволюция мировой валютной системы, формы международных расчетов, платежный баланс России
68. Эволюция кадрового менеджмента
69. Эволюция творчества Верди в сороковые годы
73. Проблема эволюции Вселенной
74. Эволюция представлений о времени
76. Эволюция представлений о пространстве
77. Эскиз к портрету биологической эволюции
78. Строение, происхождение и эволюция галактик и звезд
79. Эволюция и сотворение мира
80. Происхождение и эволюция жизни
81. Эволюция и самоорганизация химических систем. Макромолекулы и зарождение органической жизни
84. Эволюция энергетических процессов у эубактерий
85. Эволюция взглядов о рождении звёзд
89. История физики: термодинамика и молекулярная физика
90. Ферменты и белки живой клетки – это молекулярные биологические автоматы с программным управлением
91. Эволюция российской внешней политики
92. Эволюция системы образования
93. Сенат: эволюция правового статуса и компетенция
94. Эволюция прав на промышленную собственность
95. Эволюция семьи и социальная психология детства
96. Инновационная война как способ оптимизации эволюции логико - математических систем