Библиотека Рефераты Курсовые Дипломы Поиск
Библиотека Рефераты Курсовые Дипломы Поиск
сделать стартовой добавить в избранное
Кефирный гриб на сайте www.za4et.net.ru

Математика Математика

Топологические пространства

Совок большой.
Длина 21,5 см. Расцветка в ассортименте, без возможности выбора.
21 руб
Раздел: Совки
Чашка "Неваляшка".
Ваши дети во время приёма пищи вечно проливают что-то на ковёр и пол, пачкают руки, а Вы потом тратите уйму времени на выведение пятен с
222 руб
Раздел: Тарелки
Забавная пачка денег "100 долларов".
Купюры в пачке выглядят совсем как настоящие, к тому же и банковской лентой перехвачены... Но вглядитесь внимательней, и Вы увидите
60 руб
Раздел: Прочее

Современная гуманитарная академия Реферат по предмету «Алгебра и геометрия» на тему: «Топологические пространства» Выполнил: Макриденков С.А. гр. ОИН-309-02 Смоленск 2004 Содержание Введение 3 Основные этапы развития топологии 5 Определение топологического пространства 7 Задачи топологии 10 Виды топологии 12 Введение Любой человек, изучавший начала математического анализа, понимает важность понятия непрерывности функции. Немного упрощая ситуацию, можно сказать, что непрерывность числовой функции - это математическая формализация следующего свойства: график этой функции можно нарисовать на листе бумаги, не отрывая карандаша, то есть график нигде не разрывается. Числовая функция есть частный случай более общего понятия отображения, которое определяется уже не для чисел, а для элементов произвольных множеств. Возникает вопрос, можно ли определить понятие непрерывности отображений на множествах. Оказывается, для того чтобы корректно ввести это понятие, необходимо задать на множествах дополнительную структуру, так называемую топологию; множество с указанной структурой называется топологическим пространством. Математическая дисциплина, изучающая указанные выше понятия (и не только их), тоже называется топологией. Топологическое пространство — основной объект изучения топологии. Понятие топологического пространства можно рассматривать как обобщение понятия геометрической фигуры, в котором мы отвлекаемся от свойств наподобие размера или точного положения частей фигуры в пространстве, и сосредотачиваемся только на взаимном расположении частей. Топологические пространства возникают естественно почти во всех разделах математики. Определение. Пусть дано множество X. Множество его подмножеств называется топологией на X, если выполнены следующие свойства: - Все X и пустое множество принадлежат , - Объединение произвольного семейства множеств, принадлежащих , принадлежит , - Пересечение двух множеств, принадлежащих , принадлежит . Множество X вместе с заданной на нем топологией называется топологическим пространством. Подмножества X, принадлежащие , называются открытыми множествами Способы задания топологии. Не всегда удобно перечислять все открытые множества. Часто удобнее указать некоторый меньший набор открытых множеств, который порождает их все. Формализацией этого является понятие базы топологии: множество B открытых подмножеств топологического пространства (X, ) называется базой топологии , если всякое открытое множество представляется как объединение множеств из B. Еще более экономный способ задания топологии состоит в задании ее предбазы — множества, которое становится базой, если к нему прибавить произвольные конечные пересечения его элементов. Топологию можно также задать описав множество Q всех замкнутых множеств (т.е. всех дополнений к открытым множествам). Примеры. Вещественная прямая R является топологическим пространством, если назвать открытыми множествами произвольные (пустые, конечные или бесконечные) объединения конечных или бесконечных интервалов. Множество всех конечных интервалов {(a, b) a, b из R } является базой этой топологии.

Вообще, евклидовы пространства R являются топологическими пространствами. Базой топологии можно выбрать открытые шары или открытые кубы. Обобщая далее, всякое метрическое пространство является топологическим пространством, базу топологии которого составляют открытые шары. В эту категорию попадают изучаемые в функциональном анализе бесконечномерные пространства функций. Рассмотрим множество С(X, Y) непрерывных отображений топологического пространства X в топологическое пространство Y. Оно является топологическим пространством относительно следующей топологии, которая называется компактно-открытой. Ее предбазу составляют множества C(U, K), состоящие из отображений, при которых обаз компакта K в X лежит в открытом множестве U в Y. Произвольное множество X можно сделать топологическим пространством, если называть открытыми все его подмножества. Такая топология называется дискретной. Непрерывные отображения. Понятие топологии является минимально необходимым для того, чтобы говорить о непрерывных отображениях. Интуитивно непрерывность есть отсутствие разрывов, то есть близкие точки при непрерывном отображении должны переходить в близкие. Оказывается, для определения понятия близости точек можно обойтись без понятия расстояния. Именно это и есть топологическое определение непрерывного отображения. Отображение топологических пространств f: (X, X) > (Y, Y) называется непрерывным, если прообраз всякого открытого множества открыт. Категория op всех топологических пространств, морфизмы которой — непрерывные отображения, является одной из важнейших категорий в математике. Попыткам классифицировать объекты этой категории при помощи инвариантов посвящен раздел математической науки, который называется алгебраической топологией. Изучению понятий непрерывности, а также других понятий, таких как компактность или отделимость, как таковых, без обращения к другим инструментам, посвящена общая топология. Основные этапы развития топологии Отдельные результаты топологического характера были получены ещё в 18—19 вв. (теорема Эйлера о выпуклых многогранниках, классификация поверхностей и теорема Жордана о том, что лежащая в плоскости простая замкнутая линия разбивает плоскость на две части). В начале 20 в. создаётся общее понятие пространства в Т. (метрическое — М. Фреше, топологическое — Ф. Хаусдорф), возникают первоначальные идеи теории размерности и доказываются простейшие теоремы о непрерывных отображениях (А. Лебег, Л. Брауэр), вводятся полиэдры (А. Пуанкаре) и определяются их так называемые числа Бетти. Первая четверть 20 в. завершается расцветом общей Т. и созданием московской топологической школы; закладываются основы общей теории размерности (П. С. Урысон); аксиоматике топологических пространств придаётся её современный вид (П. С. Александров); строится теория компактных пространств (Александров, Урысон) и доказывается теорема об их произведении (А. Н. Тихонов); впервые даются необходимые и достаточные условия метризуемости пространства (Александров, Урысон); вводится (Александров) понятие локально конечного покрытия [на основе которого в 1944 Ж.

Дьёдонне (Франция) определил паракомпактные пространства]; вводятся вполне регулярные пространства (Тихонов); определяется понятие нерва и тем самым основывается общая теория гомологий (Александров). Под влиянием Э. Нётер числа Бетти осознаются как ранги групп гомологий, которые поэтому называются также группами Бетти. Л. С. Понтрягин, основываясь на своей теории характеров, доказывает законы двойственности для замкнутых множеств. Во 2-й четверти 20 в. продолжается развитие общей Т. и теории гомологий: в развитие идей Тихонова А. Стоун (США) и Э. Чех вводят так называемое стоун — чеховское, или максимальное, (би)компактное расширение вполне регулярного пространства; определяются группы гомологий произвольных пространств (Чех), в группы когомологий (Дж. Александер, А. Н. Колмогоров) вводится умножение и строится кольцо когомологий. В это время в алгебраической Т. царят комбинаторные методы, основывающиеся на рассмотрении симплициальных схем; поэтому алгебраическая Т. иногда и до сих пор называется комбинаторной Т. Вводятся пространства близости и равномерные пространства. Начинает интенсивно развиваться теория гомотопий (Х. Хопф, Понтрягин); определяются гомотопические группы (В. Гуревич, США) и для их вычисления применяются соображения гладкой Т. (Понтрягин). Формулируются аксиомы групп гомологий и когомологий (Н. Стинрод и С. Эйленберг, США). Возникает теория расслоений (Х. Уитни, США; Понтрягин); вводятся клеточные пространства (Дж. Уайтхед, Великобритания). Во 2-й половине 20 в. в СССР складывается советская школа общей Т. и теории гомологий: ведутся работы по теории размерности, проблеме метризации, теории (би)компактных расширений, общей теории непрерывных отображений (факторных, открытых, замкнутых), в частности теории абсолютов; теории так называемых кардинальнозначных инвариантов (А.В. Архангельский, Б. А. Пасынков, В. И. Пономарев, Е. Г. Скляренко, Ю. М. Смирнов и др.). Усилиями ряда учёных (Ж. П. Серр и А. Картан во Франции, М. М. Постников в СССР, Уайтхед и др.) окончательно складывается теория гомотопий. В это время создаются крупные центры алгебраической Т. в США, Великобритании и др. странах; возобновляется интерес к геометрической Т. Создаётся теория векторных расслоений и К-функтора (М. Атья, Великобритания; Ф. Хирцебрух, ФРГ), алгебраическая Т. получает широкие применения в гладкой Т. (Р. Том, Франция) и алгебраической геометрии (Хирцебрух); развивается теория (ко)бордизмов (В. А. Рохлин, СССР; Том, С. П. Новиков) и теория сглаживания и триангулируемости (Дж. Милнор, США). Развитие Т. продолжается во всех направлениях, а сфера её приложений непрерывно расширяется. Определение топологического пространства Напомним классическое определение непрерывности числовой функции f в точке x, восходящее к Коши. Определение 1. Функция f называется непрерывной в точке x, если для любого e > 0 существует d = d(e) > 0, такое, что если для точки x' выполнено неравенство x - x' < d, то f (x) - f (x') < e. Введенное выше определение допускает модификацию, удобную для дальнейшего изложения. Определение 1'. Функция f называется непрерывной в точке x, если для любой окрестности U точки f (x) существует окрестность V точки x, такая, что из того, что точка x' принадлежит V, следует, что f (x') принадлежит U.

Впадает в Гвинейский залив у г. Гран-Басам. Питание дождевое. Максимальные уровни в сентябре—октябре, наиболее низкий уровень в феврале. Средний годовой расход в нижнем течении 430 м 3 /сек. Судоходна в нижнем течении. Компакт Компа'кт (от лат. compactus — плотный) (математическое), компактное метрическое пространство, в частности любое компактное в себе множество евклидова пространства любого числа измерений. См. Компактность (математическое). Компактность Компа'ктность (математическое), важное свойство множеств; множество называется компактным, если каждая бесконечная последовательность его элементов (точек) имеет хотя бы одну предельную точку . От К. по отношению к объемлющему пространству отличают К. в себе: множество (лежащее в определенном топологическом пространстве или являющееся само топологическим пространством) компактно в себе, если каждая бесконечная последовательность его элементов имеет хотя бы одну предельную точку, принадлежащую тому же множеству.   В математическом анализе большое значение имеет принцип Вейерштрасса, утверждающий, что каждое ограниченное множество действительных чисел — компактно

1. Гипотеза рождения вселенной из флуктуации в напряженной метрике пространства

2. Движение в пространстве, пространство движения и геометрический образ движения: опыт топологического подхода

3. Международное сотрудничество в освоении космического пространства

4. Этих дней не смолкнет слава!

5. Россия. 21 век. Начало строительства (инфраструктурный комплекс как фактор организации экономического пространства России)

6. Экономическая сказка-реферат "НДС - вражья морда" или просто "Сказка про НДС"
7. Нормы ГК, которые определяют особенности порядка заключения договоров по недвижимости
8. Реферат о Пугачеве

9. Создание Единого экономического пространства

10. Действие закона во времени, в пространстве, по кругу лиц

11. Пространство и время как факторы специфики культуры

12. Несколько рефератов по культурологии

13. Что стало бы с литературой, если бы не было музыки

14. Быть или не быть книге (интернет против книг)

15. Лермонтов во многом еще не открыт. Он – до сих пор тайна…

16. "...Мне не стало хватать его..." (о творчестве В.С. Высоцкого)

Таблетки для посудомоечной машины "Clean&Fresh", 5 in1 (mega).
Таблетки для посудомоечной машины «Clean&Fresh» – чистота и свежесть Вашей посуды в каждой таблетке! Великолепно очищает посуду и содержит
708 руб
Раздел: Для посудомоечных машин
Ящик почтовый с замком, коричневый.
Ящик почтовый с замком. Материал: пластик. Длина: 385 мм. Ширина: 310 мм. Высота: 80 мм.
490 руб
Раздел: Прочее
Настольная игра "Запретный Остров. Приключения для смелых!".
Запретный остров – это семейная кооперативная игра, в которой игроки действуют совместно против игры. Вашей команде дерзких искателей
1215 руб
Раздел: Карточные игры

17. Реферат по научной монографии А.Н. Троицкого «Александр I и Наполеон» Москва, «Высшая школа»1994 г.

18. Д.И.Менделеев: не наукой единой

19. Ялтинская конференция 1945 года и обсуждение на ней вопроса о зонах оккупации Германии и управлении большим Берлином

20. Разработка схемы топологии локальной корпоративной сети, описание ее технических характеристик и решаемых задач

21. Быть или не быть книге (интернет против книг)

22. Чего не может компьютер, или Труднорешаемые задачи
23. Топология как отражение культуры и жизнедеятельности
24. Бронхиальная астма и лечебная физкультура при ней

25. Субъект преступления ("подновлённая" версия реферата 6762)

26. Действие уголовного закона в пространстве и времени

27. Реферат по технологии приготовления пищи "Венгерская кухня"

28. Определить капитальные затраты и эксплуатационные расходы по тепловой сети (при следующих условиях)

29. Роль транспорта в организации экономического пространства России

30. Психология труда (Обзорный реферат по психологии труда)

31. Физико-топологическое моделирование структур элементов БИС

32. Расчет топологии толстопленочной микросхемы

Карандаши цветные "Kores", 36 цветов, с точилкой.
Цветные карандаши имеют насыщенные цвета. Трехгранная форма корпуса снижает усталость и придает дополнительный комфорт. Грифель проклеен
622 руб
Раздел: Более 24 цветов
Мультиплеер с огоньками "Новогодний хоровод".
30 новогодних песенок и мелодий – в новом мультиплеере! Добрый Дед Мороз поздравит с Новым годом, а разноцветные огоньки сделают праздник
336 руб
Раздел: Смартфоны, мультиплееры
Подгузники-трусики для мальчиков Huggies DryNights, 4-7 лет, 10 штук.
Деликатная защита на всю ночь для детей от четырех лет, страдающих энурезом. Одноразовые Трусики "Huggies Dry Night" для
427 руб
Раздел: Обычные

33. Несколько рефератов по Исламу

34. "Русский Тарзан" (реферат о российском пловце Александре Попове)

35. Пространство и время

36. Пространство и время

37. Время и пространство в философии

38. Пространство и время
39. Пространство и время
40. Создание Единого экономического пространства

41. Структура организации, влияние на нее законов теории организации

42. Генезис капитализма в Мексике. Реферат по истории экономики

43. Сущность рыночной экономики. Пути к ней России

44. Почему в России не уважают законы

45. К вопросу о влиянии открытого пространства-времени на исторический процесс

46. Реалии открытого пространства-времени: к пониманию нашей исторической системы

47. Чужого горя не бывает

48. ОАО ГАЗ не только автомобили

Стиральный порошок "INDEX", универсал, 4500 грамм.
Предназначение: для стирки изделий из хлопчатобумажных, льняных, синтетических тканей, а также тканей из смешанных волокон (кроме изделий
786 руб
Раздел: Стиральные порошки
Сумка-транспортный чехол усиленная для колясок "Книжка".
Сумка чехол выполнена из прочной и легко чистящейся ткани оснащена двумя ручками для переноски. Размеры: 93x50x36 см.
907 руб
Раздел: Дождевики, чехлы для колясок
Магниты "Standart", 0,7 кг, 30 мм, темно-синие, 10 штук.
Диаметр: 30 мм. Сила: 0,7 кг. Материал: цельный ферритный магнит. Количество: 10 штук. Цвет: темно-синий.
318 руб
Раздел: Магниты канцелярские

49. Христианство - не значит пацифизм

50. Знаете ли вы историю... Или почему мы не учимся на чужих ошибках?

51. Военно-народное управление на Северном Кавказе (Дагестан): мусульманская периферия в российском имперском пространстве

52. Исторический опыт межэтнических отношений на евразийском пространстве

53. Североафриканская кампания во второй мировой войне и роль в ней фельдмаршала Эрвина Роммеля

54. В списках не значился. Васильев Б.Л.
55. Трое в лодке, не считая собаки. Джером К. Джером
56. Ханс Кристиан Браннер. Никто не знает ночи

57. Полуфабрикаты из рыбы и блюда из нее

58. Япония: Закат которого не было

59. Эстетика «Не-Х»

60. Дев на борт не бери…

61. "Не только самурай и гейша"

62. Особенности тематического пространства Новгород-псковского культурного региона и его разрушение в ходе московского завоевания

63. Христианизация ментального пространства культуры как "переоценка всех ценностей"

64. Экзистенциальный” и “рефлексивный” типы функционирования ментального пространства культуры

Швабра Vileda "Active Max".
Швабра Vileda "Active Max", выполненная с плоской насадкой, предназначена для уборки всех типов напольных покрытий, включая
999 руб
Раздел: Швабры и наборы
Сменный фильтр "Аквафор В-100-5" (4 штуки).
Модуль В100-5 содержит в оптимальном соотношении гранулы кокосового угля, ионообменные смолы и "ноу-хау" АКВАФОР - волокна
754 руб
Раздел: Фильтры для воды
Каталка-трактор с педалями "Turbo-2" с полуприцепом.
Педальная каталка-трактор «Turbo-2» c полуприцепом приводится в движение при помощи цепного механизма. На мини-тракторе установлена
4394 руб
Раздел: Каталки

65. Пространство

66. Реферат по книге Н. Цеда Дух самурая - дух Японии

67. Мне видеть не дано, быть может...

68. "Ничто не проходит бесследно..." (по повести Чехова "Моя жизнь")

69. Будьте не мертвые, а живые души. О названии поэмы Гоголя

70. Художественное пространство "Страшной мести" Н. Гоголя
71. «Настоящую нежность не спутаешь...» (любовь в лирике А. А. Ахматовой)
72. “Сказка ложь, да в ней намек!..” (А.С. Пушкин)

73. Согласны ли вы с А. С. Пушкиным в том, что “России определено было высшее назначение”?

74. "Мы живем, под собою не чуя страны..."

75. "Что же такое жизнь, как не машина, которую приводят в движение деньги?"

76. В чём не сомневался Николай Ростов

77. Пространство и время в произведениях Ф.М.Достоевского

78. "Без Ольги Ильинской и без ее драмы с Обломовым не узнать бы нам Ильи Ильича так, как мы его теперь знаем…"

79. Зося Норейко и Антон (по повести «Пойти и не вернуться»)

80. Принцип не совсем обманутых ожиданий

Автомобиль со звуковым сигналом "Джип-каталка с ручкой", красный.
Отличная мини-машинка белорусского производства, выполненная по лицензии испанской компании Molto — настоящая находка для энергичных
2126 руб
Раздел: Каталки
Логическая игра "IQ-ХоХо", арт. SG 444 RU.
Заполните игровое поле десятью двухсторонними деталями головоломки, располагая Х и О в определённой последовательности. Выполните все 120
525 руб
Раздел: Игры логические
Шары для сухого бассейна, 100 штук.
Шары для сухого бассейна упакованы в тубус, что удобно для хранения и переноски. Количество шаров 100 штук вполне хватит для детской ванны
1037 руб
Раздел: Шары для бассейна

81. Пространство поступков в лирике Лермонтова

82. "Рукописи не горят…"

83. И.А.Гончаров. Пути, которые не выбирал Обломов

84. Организация пространства в романе И. А. Гончарова "Обыкновенная история"

85. "Я любви искала и не нашла"

86. Семья в творчестве Островского и место женщины в ней
87. Проблема времени и пространства в романе М.Булгакова "Мастер и Маргарита"
88. Пространство и время в романе "И больше века длится день"

89. Сочинения на тему "Ни за что бы не подумал, что я..."

90. Быть может, в лете не потонет строфа, слагаемая мной

91. Почему не состарился до сих пор грибоедовский Чацкий, а с ним и вся комедия

92. Мы не знаем войны

93. Я лучшей доли не искал

94. Французская лирика в переводах Бенедикта Лифшица: метрика, строфика, ритмика, рифма

95. "Не верят в мире многие любви" (М. Ю. Лермонтов)

96. «Не все читали заревые знаки»: к проблеме самосознания А. Блока

Шторка антимоскитная, черная.
Размеры: 100х220 см. Препятствует проникновению насекомых. Не нарушает естественную циркуляцию воздуха. Подходит для любых типов дверных
352 руб
Раздел: Сетки противомоскитные
Альбом "Мои школьные годы" (книга с карманами на 11 лет).
Перед Вами то, что каждая семья так долго ждала – красивое, качественное, креативное школьное портфолио. Да еще и на все школьные годы!
842 руб
Раздел: Портфолио
Средство для мытья посуды биоразлагаемое "Synergetic", концентрированное, 5 л.
Концентрированное высокопенное средство для мытья всех видов посуды от любых видов загрязнений. 100% смываемость. Подходит для мытья
631 руб
Раздел: Гели, концентраты

97. "Счастье не в счастье, а в его достижении..." Ф.М.Достоевский. (По одному из произведений русской литературы)

98. "Счастье не в счастье, а в его достижении..." Ф.М.Достоевский. (По произведениям русской литературы. — Б.Ш.Окуджава)

99. Камю А. - Тот, кто никого не любил


Поиск Рефератов на сайте za4eti.ru Вы студент, и у Вас нет времени на выполнение письменных работ (рефератов, курсовых и дипломов)? Мы сможем Вам в этом помочь. Возможно, Вам подойдет что-то из ПЕРЕЧНЯ ПРЕДМЕТОВ И ДИСЦИПЛИН, ПО КОТОРЫМ ВЫПОЛНЯЮТСЯ РЕФЕРАТЫ, КУРСОВЫЕ И ДИПЛОМНЫЕ РАБОТЫ. 
Вы можете поискать нужную Вам работу в КОЛЛЕКЦИИ ГОТОВЫХ РЕФЕРАТОВ, КУРСОВЫХ И ДИПЛОМНЫХ РАБОТ, выполненных преподавателями московских ВУЗов за период более чем 10-летней работы. Эти работы Вы можете бесплатно СКАЧАТЬ.