![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Коллокационная модель прогнозирования количественных характеристик основных финансовых инструментов фондового рынка |
Коллокационная модель прогнозирования количественных характеристик основных финансовых инструментов фондового рынка Л.О. Бабешко, доцент кафедры "Математическое моделирование экономических процессов" Аннотация Данная работа посвящена вопросу прогнозирования характеристик основных финансовых инструментов фондового рынка при помощи модели средней квадратической коллокации ( Термин "коллокация" (англ. colloca io - взаиморасположение; расстановка) после пуб-ликации работы советского математика и экономиста Л.В. Канторовича "Об одном мето-де приближенного решения дифференциальных уравнений в частных производных" (1934) широко используется в современной вычислительной математике для прибли-женного решения дифференциальных уравнений. Под коллокацией, с математической точки зрения, понимается определение функции путем подбора аналитической аппрок-симации к определенному числу заданных линейных функционалов. "Математическая" ("чистая") коллокация нашла широкое применение в технических приложениях при ре-шении интерполяционных задач. Дальнейшее обобщение теории коллокации связано с применением к объектам стохастической природы и вслед за работами Г. Морица (на-пример: Mori z H. Leas -Squares Colloca io // Reviews of Geophysics a d Space Physics. V. 16. o. 3. Aug. 1978. P. 421-430) под коллокацией понимается обобщение метода наименьших квадратов на случай бесконечномерных гильбертовых пространств.). Коллокационная модель прогнозирования сохраняет основные преимущества классических регрессионных моделей - инвариантность по отношению к линейным преобразованиям исходных данных и результатов, оптимальность решения (в смысле наиболее точного прогноза из всех возможных вариантов линейных решений на основе заданных исходных данных) - и имеет дополнительные достоинства: результат не зависит от числа оцениваемых величин; как наблюдаемые, так и оцениваемые величины могут быть разнородными (иметь различную физическую, экономическую или математическую природу). Коллокационная модель может быть использована не только для построения оптимального прогноза однородных данных, но и для оценивания любых интересующих характеристик финансовых инструментов фондового рынка по неоднородной исходной информации (доходностей, курсов, объемов продаж, индексов и т.д.). Потребность в прогнозировании как специфическом научно-прикладном анализе (нацеленном на будущее или учитывающем неопределенность, связанную с отсутствием или неполнотой информации) возникает со стороны самых разнообразных областей человеческой деятельности – политики, международных отношений, экономики, финансов и т.д. Предвидение вероятного исхода событий дает возможность заблаговременно подготовиться к ним, учесть их положительные и отрицательные последствия, а если это возможно – вмешаться в ход развития, что особенно важно в финансовой сфере, подверженной различного рода рискам. В общем виде задачу прогнозирования можно сформулировать следующим образом: по имеющейся информации X (измерениям, наблюдениям) требуется предсказать (спрогнозировать, оценить) некоторую величину Y, стохастически связанную с X.
Например, по имеющейся информации о динамике цен на ту или иную ценную бумагу оценить ее значение на какой-то период в будущем или оценить доходность одних ценных бумаг, используя информацию о доходности других ценных бумаг, и т.д. Искомое значение Y можно оценить различными способами, но в любом случае это приближенное значение будет базироваться лишь на исходной информации: . Различные функции определяют различные методики прогноза оценки Y. Ниже мы рассмотрим методику линейного стохастического прогнозирования. Итак, пусть имеется два множества случайных величин: множество значений независимой переменной (измерений) , образующих -мерный вектор-столбец, и множество значений зависимой переменной (сигналов) , образующих m-мерный вектор-столбец (значок ( ) – означает транспонирование). Предполагается, что каждая из переменных является центрированной случайной величиной, т.е. имеет математическое ожидание равное нулю: E{X} = 0, E{Y} = 0. (1) Если это не так, то выполняется центрировка, то есть значения E{X} 0 и E{X} 0 вычитаются из заданных значений переменных X и Y соответственно. Пусть имеется дополнительная информация в виде ковариационных функций: 1) автоковариационных функций векторов X и Y, (2) (3) где Xj = X( j) – значение переменной в момент j, j=1, , , Yk = Y( k) – значение переменной в момент k, k=1, , m, – интервал времени между соответствующими моментами; 2) взаимных ковариационных функций между X и Y (4) По данным ковариационным функциям для различных интервалов можно составить соответствующие ковариационные матрицы: , , , . (4) Предполагается, что данные ковариационные матрицы имеют полный ранг, т.е. ранг равный наименьшему из чисел m и . Задача состоит в оценке вектора Y по измеренным значениям вектора X. Причем связь между векторами будет определяться не через функциональное соотношение, а только через ковариационные матрицы (4) . Ограничиваясь методикой линейного прогноза, будем искать оценку вектора Y в виде , (5) или в координатной форме: , i=1, , m, т.е. каждый элемент вектора Y аппроксимируется линейной комбинацией исходных данных X = (X1, X2, ., X )'. Ошибка аппроксимации (вектор ошибок) определяется как разность между истинным значением переменной и оценкой = Y – . (6) Ковариационная матрица и дисперсии ошибок определяются по формулам , (7) (8) соответственно. Согласно общей теории статистического оценивания наилучшая (оптимальная) линейная оценка определяется как несмещенная линейная оценка с минимальной дисперсией. Несмещенность линейной оценки (5) проверяется непосредственно , с учетом (1) и свойств математического ожидания. Для того чтобы дисперсия линейной оценки (5) была минимальной, матрица H должна определяться из следующих соображений. Ковариационная матрица ошибок для произвольной матрицы H имеет вид: . Вычитая из правой части квадратичную форму и добавляя ее, а также домножая члены на единичную матрицу E = , можно представить ковариационную матрицу ошибок в виде суммы двух матриц: =– = =, где A = , B = . Матрица А одинакова для всех линейных оценок, так как она не зависит от матрицы H.
Заметим, что элементы матрицы В являются неотрицательными числами (поскольку ковариационная матрица Kxx является невырожденной, а как известно, все невырожденные ковариационные матрицы положительно определены), поэтому диагональные элементы матрицы K , представляющие собой дисперсии ошибок, будут наименьшими только в том случае, когда матрица В является нулевой B = = 0. (9) Отсюда следует, что дисперсии ошибок будут минимальными, если матрица Н определяется выражением . (10) Таким образом, выражение для оптимальной (несмещенной, с минимальной дисперсией) линейной оценки получается подстановкой в формулу (5) выражения (10): . (11) При этом ковариационная матрица ошибок прогнозирования переменной Y с учетом (9) принимает вид K = KYY – . (12) При практической реализации алгоритма прогнозирования (11) целесообразно сначала вычислить вектор C C = , (13) поскольку сомножители в данном выражении не зависят от значений переменной Y, а затем выполнять умножение на матрицу взаимных ковариаций . Если выполняется прогноз одного значения переменной Y, например на момент = p, то вектор C умножается на вектор-строку ковариаций , где , . (14) Данный метод может быть использован при прогнозировании значений переменных как по пространственным данным (пространственный срез) (cross-sec io al da a), например, по набору сведений о доходностях разных ценных бумаг (X и Y) за один и тот же период (момент) времени, так и по данным временных рядов ( ime-series da a), например, доходности ценной бумаги данного вида (Y) за несколько лет. Во втором случае, т.е. в случае, когда прогноз переменной Y в момент = p выполняется по данным временного ряда , формула (11) принимает следующий вид , (14') где – вектор-строка ковариаций, с элементами (i=1, , m); KYY – автоковариационная матрица вектора Y. При этом формулу для дисперсии ошибки прогноза в момент = p (с учетом выражения (12)) можно переписать следующим образом , (15) где Dy – дисперсия случайного процесса Y. Поскольку ковариационная матрица положительно определена и, следовательно, квадратичная форма в выражении (15) принимает неотрицательные значения, любой прогноз будет уменьшать исходную дисперсию Dy. В худшем случае, когда точка p, в которой выполняется прогноз, настолько удалена от ординат Yi, i=1, 2, , m с заданными значениями, что вектор ковариаций является нулевым вектором, дисперсия прогноза будет равна дисперсии исходного процесса Dy: D (P) = Dy. Если момент = p, на который выполняется прогноз переменной Y, совпадает с моментом = i, на который известно ее значение Yi, элементы вектора ковариаций будут совпадать с элементами i-й строки ' и элементами i-го столбца матрицы автоковариаций KYY. Поэтому в соответствии с (14) значение прогноза будет в точности совпадать с заданным значением переменной , (16) и в соответствии с (15) ошибка дисперсии прогноза D (P) = 0, так как квадратичная форма при p = i достигает своего максимального значения, равного дисперсии Dy. Формулы (10) и (14) называются средним квадратическим прогнозом или коллокацией и представляют собой аналог формулы прогноза Колмогорова–Винера, известной из теории стохастических процессов.
Экономическая глобализация это воплощение постиндустриальных критериев в планетарном пространстве. Ярче и успешнее всего постмодерн воплощается в культуре и в СМИ, которые довольно быстро усваивают постмодернистический код. В той мере, в какой СМИ относятся к экономическому сектору, они представляют собой элемент экономики постмодерна, наряду с индустрией телекоммуникаций, некоторых биржевых и финансовых технологий, фондового рынка, хеджирования и т.Pд. Три экономических уклада современной России Наша экономика находится сегодня в фазе регрессивного индустриального цикла, с элементами (не очень значимого в экономике, но важного в социально-культурной сфере) цикла предындустриального. Процесс экономической модернизации российского хозяйства крайне двусмысленное и неоднозначное явление. В советский период мы стремились конкурировать с Западом в рамках индустриальной модели. Когда Запад перешел к постиндустриальной фазе, мы растерялись, подняли руки и рухнули. Мы даже не поняли, что происходит. И это при том, что в истории многие аграрные общества сопротивлялись индустриальной модернизации довольно жестко вплоть до затяжных национально-освободительных войн
1. Рынок ценных бумаг и его характеристика
2. Модель формирования портфеля ценных бумаг САРМ
4. Рынок ценных бумаг и его основные модели
5. Анализ и прогнозирование конъюнктуры рынка ценных бумаг
9. Характеристика и модель личности юристов
10. Характеристика рынка ценных бумаг в России
11. Законодательство по ценным бумагам
12. Ценные бумаги как объект гражданского права
13. Ценные бумаги как объекты гражданских прав
14. Технический анализ рынка ценных бумаг на примере акций РАО "ЕЭС Россия" 2001-2002 гг.
16. Виды ценных бумаг и операций с ними коммерческих банков
17. Правовое урегулирование обращения ценных бумаг
19. Интернет-трейдинг: виртуальный рынок ценных бумаг
20. Учет ценных бумаг: государственных краткосрочных облигаций, казначейских обязательств, векселей
21. Проблема учета и аудита операций по ценнам бумагам ( в Азербайджане)
25. Ценные бумаги
26. Рынок ценных бумаг в России
27. Ценные бумаги КАК ОБЪЕКТЫ ГРАЖДАНСКИХ ПРАВ
28. Операции с ценными бумагами
29. Основные термины по ценным бумагам
30. Состояние и перспективы рынка ценных бумаг в России
31. Виды ценных бумаг (Контрольная)
33. Международный рынок ценных бумаг
34. Реформа рынка ценных бумаг в России
37. Рынок ценных бумаг (шпаргалка)
41. Управление операциями с ценными бумагами в СХПК "Адышевский" Оричевского р-на Кировской области
42. Ценные бумаги
44. Ценные бумаги - сущность и роль в рыночной экономике
45. Ценные бумаги и фондовый рынок /Я.М.Миркин/
46. Ценные бумаги как объекты гражданских прав
47. Эмиссия и обращение ценных бумаг
48. Деньги и ценные бумаги как объекты гражданских прав
49. Инвестиционная деятельность на рынке корпоративных ценных бумаг
50. Технический анализ рынка ценных бумаг на примере акций РАО "ЕЭС Россия" 2001-2002 гг.
51. Рынки ценных бумаг и финансовые инструменты
52. Рынок ценных бумаг в России до 1917 года
53. Ценные бумаги: понятие и виды
57. Ценные бумаги их сущность и функции
58. Проблема учета и аудита операций по ценнам бумагам ( в Азербайджане)
59. Российский рынок ценных бумаг
60. Ценные бумаги как объекты гражданских прав
61. Основные черты рынка ценных бумаг
62. Налогообложение НДС операций с ценными бумагами
63. Ипотечные ценные бумаги. Мировой опыт и российские условия
66. Вещь и право требования: к вопросу о допустимости виндикации бездокументарных ценных бумаг
68. Рынок ценных бумаг. Его экономический и финансовый аспекты
69. Задачи и функции рынка ценных бумаг
73. Рынок ценных бумаг в Казахстане
74. Рынок ценных бумаг. Его профессионалы и участники. Выпуск и обращение ценных бумаг
75. Федеральное государственное и федеральное регулирование рынка ценных бумаг
76. Ценные бумаги с нулевым купоном
77. Особенности депозитарного учета ценных бумаг при залоговых операциях
78. Ценные бумаги субфедеральных и муниципальных эмитентов на СПВБ
79. Государственная регистрация выпуска ценных бумаг при учреждении акционерного общества
80. В течении какого срока акции и иные ценные бумаги должны быть оплачены
81. Ценные бумаги
82. Индексы российского рынка ценных бумаг
83. Профессиональная деятельность на рынке ценных бумаг
85. Рынок ценных бумаг и первичный и вторичный рынок
89. Ценные бумаги с выплатой процентов в момент погашения
90. Ценные бумаги
93. Рынок ценных бумаг. Особенности его функционирования
94. Рынок ценных бумаг.Вексель-инструмент рынка ценных бумаг
95. Финансовые рынки, ценные бумаги, фондовые биржи
96. Минимизация расчетных рисков в инфраструктуре рынка ценных бумаг
98. Правовое положение участников рынка ценных бумаг