![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Психофизиология пространственного зрительного внимания у человека |
В. В. Шульговский Московский государственный университет им. М.В. Ломоносова Человек обладает совершенным зрением, и оно является важнейшим анализатором для познания окружающего мира. Зрение человека имеет высокое разрешение, оно цветное (приматы – трихроматы). Наш зрительный мир объемен. При движениях головы, ходьбе, беге, прыжках окружающий зрительный мир остается константным несмотря на то, что сетчаточное изображение испытывает сильные смещения. Из анатомии сетчатки известно, что колбочки – фоторецепторы дневного и цветного зрения – сосредоточены в желтом пятне (fovea), которое занимает на сетчатке всего около 2°. Именно они обеспечивают высокое разрешение зрения, восприятие цвета, предметное зрение. Зрение в сумерках, когда работают только палочки, занимающие остальное пространство сетчатки, чрезвычайно несовершенно – воспринимаются только контуры предметов (ночью все кошки серые). Какие нейрофизиологические механизмы обеспечивают совершенство нашего зрения кроме самих фоторецепторов? Чтобы разобраться в этом, обратимся к эволюции органов зрения в ряду позвоночных животных. Степень развития зрения полностью определяется необходимостью животного ориентироваться во внешней среде. У рыб уже хорошо развито зрение. Сетчатка рыб в основных чертах не отличается от сетчатки млекопитающих. Аккомодация (наводка на резкость), правда, осуществляется с помощью передвижения круглого хрусталика ближе-дальше от сетчатки с помощью серповидноклеточного отростка, а не изменением кривизны хрусталика, как у наземных позвоночных. Уже в условиях однородной водной среды у рыб возникла необходимость специального механизма стабилизации изображения на сетчатке при движении животного. Голова рыбы непосредственно соединена с туловищем, и поэтому положение глаз в орбитах зависит от положения туловища. Движение глаз в орбитах определяется двумя рефлексами: вестибулоокулярным и оптомоторным. Вестибулоокулярный рефлекс запускается с вестибулярных рецепторов, при этом глаза в орбитах противовращаются относительно направления вращения всего туловища. Благодаря этому рефлексу абсолютное положение зрительных осей в пространстве, окружающем животное, стабилизируется во время движения животного. Этот рефлекс для своей работы не требует зрительных стимулов. В отличие от этого оптомоторный рефлекс для своего запуска требует структурированного зрительного фона. В лаборатории оптомоторный рефлекс легко получить поместив животное в центре вращающегося цилиндра, стенки которого раскрашены черно-белыми полосами. Эти два рефлекса проявляются внешне одинаково: вестибулоокулярный рефлекс противовращает глаза в орбитах при вращении головы, сохраняя неизменным положение зрительных осей глаз в пространстве, а оптомоторный рефлекс также противовращает глаза в орбитах, но стабилизирует зрительные оси относительно структурированного зрительного поля зрения. Назначение обоих рефлексов – предотвратить сползание изображения при вращении животного или движении зрительного мира относительно животного. Трудности в решении задачи стабилизации сетчаточного изображения многократно возрастают у наземных млекопитающих.
Голова этих животных помещается на подвижной шее. Это дает дополнительные возможности исследовать окружающий мир, но в то же время резко усложняет проблему стабилизации сетчаточного изображения. Трудности стабилизации сетчаточного изображения возрастают, так как эти животные способны к быстрым движениям (бег, прыжки и пр.). Эволюция сетчатки высших млекопитающих пошла по пути дифференцирования сетчатки на зону с высоким разрешением (area ce ralis – у копытных, хищных и некоторых других и fovea – у приматов), которая занимает, например, у человека около 2°. Остальная часть сетчатки, как уже упоминалось, занята палочками – рецепторами сумеречного зрения. В группе животных с area ce ralis (их условно можно назвать афовеальными) зрительная задача ограничивается прослеживанием движущихся объектов преимущественно по горизонтальному меридиану, поэтому движения глаз в орбитах ограничиваются плавными прослеживающими движениями. В группе фовеальных животных (в отряде приматов) возникла принципиально другая зрительная задача – активное исследование окружающего мира. Как уже говорилось, природа создала сетчатку приматов с fovea, в области которой находится высокая плотность колбочек – рецепторов дневного и цветового зрения. Для решения задачи исследования окружающего мира необходимо было создание глазодвигательного механизма активного помещения информативно значимых деталей сетчаточных изображений объектов на fovea (фовеация). У человека наблюдаются все перечисленные выше рефлексы, при помощи которых осуществляются стабилизация изображения на сетчатке и рассматривание окружающего мира. Перечислим эти рефлексы. Вестибулоокулярный рефлекс легко получить вращением человека в специальном кресле, которое вращают вокруг вертикальной оси. Регистрация движений глазных яблок показывает, что при вращении человека в затемненной комнате глаза в орбитах испытывают колебательные движения (вестибулярный нистагм): медленная фаза движения в направлении вращения, а быстрая – в противоположную сторону. Например, этот рефлекс участвует в установке взора. Если предъявить зрительный объект на периферии зрительного поля, то человек совершает вначале скачкообразное движение (саккаду) глазами и тем самым помещает изображение на fovea. Но глаза в орбитах занимают в этом случае крайнее положение. Поэтому голова начинает поворачиваться в направлении зрительного объекта. Глаза при этом противовращаются в орбитах, удерживая изображение объекта на fovea. Благодаря всем этим движениям (глаз в орбитах и головы) положение зрительной оси в пространстве (мнимая линия, соединяющая fovea и зрительный объект) остается неизменным. Установка взора продолжается до тех пор, пока глаза в орбитах не занимают центрального положения. Оптомоторный рефлекс получают при движении перед глазами испытуемого чередующихся черно-белых полос. В этом случае движения глаз в орбитах не отличаются от вестибулоокулярного рефлекса – медленная фаза нистагма в направлении движения фона, а быстрая – в противоположную сторону. Рефлекс прослеживания хорошо проявляется при неожиданном появлении объекта в области бокового зрения.
В этом случае глаз скачком приводит этот объект на центр сетчатки и затем осуществляются плавные прослеживающие движения глаз с участием головы. Совершенно уникальные движения глаз, которые в полной мере развиты только у приматов, включая человека, – это саккады (от фр. – хлопок паруса). Современная нейрофизиология установила, что в производстве этой формы движения глаз задействован стволовой нейронный генератор. На сагиттальном срезе мозгового ствола головного мозга обезьяны показано местоположение области, ответственной за производство саккад, – она локализована в парамедианной области ретикулярной формации моста. Эта область содержит несколько видов нейронов. Управление этих нейронов производится из верхних двухолмий, а также эта область получает прямые входы от фронтального глазодвигательного поля коры больших полушарий. Благодаря последней связи управление саккадой может быть произвольным. Саккадными движениями глаз человек способен активно исследовать окружающий зрительный мир. Видно, что у больного человека нарушена произвольная способность управлять положением глаз и отчет таких больных не соответствует предъявленной картине. Описанные глазодвигательные реакции чрезвычайно важны для зрительного восприятия. Например, расстройство вестибулоокулярного рефлекса, которое наблюдается при некоторых неврологических заболеваниях или в космическом полете у космонавтов, приводит к неспособности стабилизировать сетчаточное изображение и как следствие этого – к потере рассматриваемого объекта из поля зрения. Механизм саккад необходим для активного исследования окружающего мира, он принимает самое непосредственное участие в чтении, просмотре телевизионных передач и т.д. Перейдем к описанию некоторых свойств саккадной системы человека, связанных со зрительным вниманием. Мы будем придерживаться трехуровневой гипотезы саккадной системы, которая предполагает три этапа в программировании саккады: процессы внимания, принятие решения и определение характеристик саккад. Эта идея получила название премоторной гипотезы внимания. Согласно этой гипотезе, механизм внимания можно разделить на процесс включения внимания, что может закончиться фовеацией, и сброса внимания. В результате последнего процесса информация поступает в систему локализации зрительной цели и происходит выбор объекта периферийным зрением. Сброс внимания может происходить при отсутствии зрительного восприятия. Опишем эксперимент, который привел к формулированию этой гипотезы. Испытуемый в затемненной комнате находится перед экраном, в центре которого горит маленькая (около 2°) зрительная цель, так называемая фиксационная точка (ФТ). Испытуемый перед экспериментом получает инструкцию "фиксировать взор на светящейся точке". Если неожиданно для испытуемого погасить ФТ и зажечь другой стимул на расстоянии около 20° по горизонтальному меридиану – периферический стимул (ПС), то латентный период саккады на ПС будет составлять у здорового человека около 200-250 мс. Проведем этот эксперимент по другому – после гашения фиксационного стимула (ФС) следующий ПС появится только через 200 мс.
Необходимо отметить и то, что пространственная ориентация у человека в большой степени опирается на выработанные культурой знаковые средства отображения пространственных отношений, часть из которых подвергается интериоризации (сюда относятся и знаковые когнитивные карты). См. Аккомодация глаз, Безориентирное поле, Бинокулярное зрение, Восприятия пространства нарушения, Глубинное зрение, Зрительное восприятие, Иллюзия Луны, Константность восприятия, Макропсия, Микропсия, Монокулярное зрение, Монокулярный параллакс движения, Перспектива, Поле зрения, Реафферентации принцип, Стереопсис. ВОСПРИЯТИЕ СЛОЖНЫХ ЗВУКОВ (англ. рerceрtion of comрlex sounds)P процесс приема и переработки слуховым анализатором звуков сложного спектрального состава (см. Спектр звуковой), как правило, меняющегося во времени по характерному для данного источника «алгоритму». Мир звуков отличается огромным разнообразием, однако в нем можно выделить некоторые группы с относительно общими признаками и принципами восприятия: звуки природной и синтетической среды (технических объектов), речевые и музыкальные
1. Исследование внимания в психофизиологии
2. Солнечная система в центре внимания науки
3. Воспитание внимания у подростков на уроке физкультуры
4. Внимание человека, способы его тренировки и развития.
9. БРИК: все внимание на две последние буквы
10. Современные направления прикладной психофизиологии
12. Камеральные проверки: на что обратить внимание
15. Внимание! Женщина на работе…
17. Внимание
25. Феномен внимания
26. Тенденция года – внимание к государственным коммуникациям
27. Как завладеть вниманием потребителя в рекламе
28. Гиперактивность с дефицитом внимания у детей
29. Внимание. Общая характеристика внимания
30. Актуальные проблемы дифференциальной психофизиологии
31. Способы удержания внимания при публичном выступлении
32. Синдром дефицита внимания и гиперактивности
33. Способы привлечения внимания читателей в газетных заголовках
34. Методы привлечения внимания к рекламе. Сущность международной рекламы
35. Особенности Синдрома дефицита внимания и гиперактивности
36. Внимание к внутренним проблемам - способ справиться с "самим собой"
37. Использование дидактических игр для развития внимания на уроках математики в 5 классах
41. Развитие внимания первоклассников во внеурочное время при проведении экскурсий.
42. Установка и внимание в обучении
43. Внимание
44. Внимание в структуре учебной деятельности
45. Внимание и психическое время
46. Внимание у детей с интеллектуальной недостаточностью
47. Внимание: его устойчивость и колебания
48. Игровая психокоррекция при работе с детьми с синдромом дефицита внимания с гиперактивностью
49. Индивидуальные особенности внимания
50. Коррекция внимания в подростковом возрасте
51. Краткий курс психофизиологии
52. Определение концентрации внимания на основе цифровых таблиц по методике Шульте
57. Психокоррекционная программа на развитие внимания для старшего дошкольного возраста
58. Психолого-педагогические условия развития внимания у детей 5-6 лет с нарушением речи
59. Психофизиология
61. Развитие внимания как один из факторов успешности обучения детей с ЗПР
63. Синдром дефицита внимания и гиперактивности
64. Современные методы исследования психофизиологии памяти
65. Стереотипы и недостаток внимания, как факторы затрудняющие общение