![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Закон Хаббла |
Закон Хаббла Кажущаяся скорость удаления галактики от нас прямо пропорциональна расстоянию до нее. Вернувшись с первой мировой войны, Эдвин Хаббл устроился на работу в высокогорную астрономическую обсерваторию Маунт-Вилсон в Южной Калифорнии, которая в те годы была лучшей в мире по оснащенности. Используя ее новейший телескоп-рефлектор с диаметром главного зеркала 2,5 м, он провел серию любопытных измерений, навсегда перевернувших наши представления о Вселенной. Вообще-то, Хаббл намеревался исследовать одну застаревшую астрономическую проблему — природу туманностей. Эти загадочные объекты, начиная с XVIII века, волновали ученых таинственностью своего происхождения. К XX веку некоторые из этих туманностей разродились звездами и рассосались, однако большинство облаков так и остались туманными — и по своей природе, в частности. Тут ученые и задались вопросом: а где, собственно, эти туманные образования находятся — в нашей Галактике? или часть из них представляют собой иные «островки Вселенной», если выражаться изощренным языком той эпохи? До ввода в действие телескопа на горе Уилсон в 1917 году этот вопрос стоял чисто теоретически, поскольку для измерения расстояний до этих туманностей технических средств не имелось. Начал свои исследования Хаббл с самой, пожалуй, популярной с незапамятных времен туманности Андромеды. К 1923 году ему удалось рассмотреть, что окраины этой туманности представляют собой скопления отдельных звезд, некоторые из которых принадлежат к классу переменных цефеид (согласно астрономической классификации). Наблюдая за переменной цефеидой на протяжении достаточно длительного времени, астрономы измеряют период изменения ее светимости, а затем по зависимости период—светимость определяют и количество испускаемого ею света. Чтобы лучше понять, в чем заключается следующий шаг, приведем такую аналогию. Представьте, что вы стоите в беспросветно темной ночи, и тут вдалеке кто-то включает электрическую лампу. Поскольку ничего, кроме этой далекой лампочки, вы вокруг себя не видите, определить расстояние до нее вам практически невозможно. Может, она очень яркая и светится далеко, а может, тусклая и светится неподалеку. Как это определить? А теперь представьте, что вам каким-то образом удалось узнать мощность лампы — скажем, 60, 100 или 150 ватт. Задача сразу упрощается, поскольку по видимой светимости вы уже сможете примерно оценить геометрическое расстояние до нее. Так вот: измеряя период изменения светимости цефеиды, астроном находится примерно в той же ситуации, как и вы, рассчитывая расстояние до удаленной лампы, зная ее светосилу (мощность излучения). Первое, что сделал Хаббл, — рассчитал расстояние до цефеид на окраинах туманности Андромеды, а значит, и до самой туманности: 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние до галактики Андромеды (так ее теперь называют) составляет 2,3 миллиона световых лет. — Прим. автора) — то есть туманность находится далеко за пределами Млечного Пути — нашей галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к базовому выводу о структуре Вселенной: она состоит из набора огромных звездных скоплений — галактик.
Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем. Одного этого открытия, вообще-то, хватило бы Хабблу для всемирного признания его заслуг перед наукой. Ученый, однако, этим не ограничился, и подметил еще один важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько ниже длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера, а это означает, что все наблюдаемые соседние галактики удаляются от Земли, поскольку у практически всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления. Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик (по наблюдениям переменных цефеид) с измерениями скоростей их удаления (по красному смещению). И Хаббл выяснил, что чем дальше от нас находится галактика, тем с большей скоростью она удаляется. Это самое явление центростремительного «разбегания» видимой Вселенной с нарастающей скоростью по мере удаления от локальной точки наблюдения и получило название закона Хаббла. Математически он формулируется очень просто: v = Hr где v — скорость удаления галактики от нас, r — расстояние до нее, а H — так называемая постоянная Хаббла. Последняя определяется экспериментально, и на сегодняшний день оценивается как равная примерно 70 км/(с·Мпк) (километров в секунду на мегапарсек; 1 Мпк приблизительно равен 3,3 миллионам световых лет). А это означает, что галактика, удаленная от нас на расстояние 10 мегапарсек, убегает от нас со скоростью 700 км/с, галактика, удаленная на 100 Мпк, — со скоростью 7000 км/с, и т. д. И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, всё более удаленных от Млечного Пути галактик видимой Вселенной из-под действия этого закона не выпадает. Итак, главное и — казалось бы — невероятное следствие закона Хаббла: Вселенная расширяется! Мне этот образ нагляднее всего представляется так: галактики — изюмины в быстро всходящем дрожжевом тесте. Представьте себя микроскопическим существом на одной из изюмин, тесто для которого представляется прозрачным: и что вы увидите? Поскольку тесто поднимается, все прочие изюмины от вас удаляются, причем чем дальше изюмина, тем быстрее она удаляется от вас (поскольку между вами и далекими изюминами больше расширяющегося теста, чем между вами и ближайшими изюминами). В то же время, вам будет представляться, что это именно вы находитесь в самом центре расширяющегося вселенского теста, и в этом нет ничего странного — если бы вы оказались на другой изюмине, вам всё представлялось бы в точности так же.
Так и галактики разбегаются по одной простой причине: расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной. Лучше всего это сформулировал мыслитель XV века Николай Кузанский: «Любая точка есть центр безграничной Вселенной». Однако закон Хаббла подсказывает нам и еще кое-что о природе Вселенной — и это «кое-что» является вещью просто-таки экстраординарной. У Вселенной было начало во времени. И это весьма несложное умозаключение: достаточно взять и мысленно «прокрутить назад» условную кинокартину наблюдаемого нами расширения Вселенной — и мы дойдем до точки, когда всё вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме. Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва, и более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется. Закон Хаббла, кстати, помогает также оценить возраст Вселенной (конечно, весьма упрощенно и приблизительно). Предположим, что все галактики с самого начала удалялись от нас с той же скоростью v, которую мы наблюдаем сегодня. Пусть — время, прошедшее с начала их разлета. Это и будет возраст Вселенной, и определяется он соотношениями: v x = r, или = r/V Но ведь из закона Хаббла следует, что r/v = 1/H где Н — постоянная Хаббла. Значит, измерив скорости удаления внешних галактик и экспериментально определив Н, мы тем самым получаем и оценку времени, в течение которого галактики разбегаются. Это и есть предполагаемое время существования Вселенной. Постарайтесь запомнить: по самым последним оценкам, возраст нашей Вселенной составляет около 15 миллиардов лет, плюс-минус несколько миллиардов лет. (Для сравнения: возраст Земли оценивается в 4,5 миллиардов лет, а жизнь на ней зародилась около 4 миллиардов лет назад.) Эдвин Пауэлл ХАББЛ Edwi Powell Hubble, 1889–1953 Американский астроном. Родился в г. Маршфилд (штат Миссури, США), вырос в Уитоне (штат Иллинойс) — тогда это был не университетский, а промышленный пригород Чикаго. Окончил с отличием Чикагский университет (где отличился еще и спортивными достижениями). Еще учась в колледже, подрабатывал ассистентом в лаборатории нобелевского лауреата Роберта Милликена (см. Опыт Милликена), а в летние каникулы — геодезистом на железнодорожном строительстве. Впоследствии Хаббл любил вспоминать, как вместе еще с одним рабочим они отстали от последнего поезда, увозившего их геодезическую бригаду назад, к благам цивилизации. Три дня они проблуждали в лесах, прежде чем добрались до населенной местности. Никакой провизии у них с собой не было, но, по словам самого Хаббла, «Можно было, конечно, убить ежика или птичку, но зачем? Главное, что воды вокруг хватало». Получив в 1910 году диплом бакалавра, Хаббл отправился в Оксфорд благодаря полученной стипендии Роудса. Там он начал было изучать римское и британское право, но, по его собственм словам, «променял юриспруденцию на астрономию» и вернулся в Чикаго, где и занялся подготовкой к защите своей дипломной работы.
Модель Большого Взрыва ждала других разработчиков. Что же дальше? И это было закономерно. Леметр предложил в качестве зародыша Вселенной объект конечных размеров, сверхмассивный первичный атом. Его взрыв порождает опять-таки сверхтяжелые и потому нестабильные осколки, фрагменты которых тоже должны делиться. Если принять, что Вселенная, как сейчас считается, содержит порядка 1080 частиц, то получится, что атом-отец и его потомки во множестве поколений должны претерпеть примерно 260 делений и на этом остановиться. Однако такая схема даже семьдесят лет назад не могла вызвать доверия. В процессе множественных делений в конце концов должны были возникать устойчивые ядра. А поскольку титул абсолютного чемпиона ядерной стабильности принадлежит железу, то в космических масштабах именно оно должно было оказаться самым распространенным элементом. Однако в тридцатые годы астрономы знали, что Вселенная почти полностью состоит из водорода и гелия, причем количества их ядер соотносятся примерно в пропорции 10:1. Несомненным достоинством модели Леметра было то, что она объяснила (фактически даже предсказала) закон Хаббла, по крайней мере качественно
1. Относительность закона Хаббла
4. Юрисдикционное действие антимонопольных законов
5. Статьи Закона о трудовой деятельности касательно Юридического лица
9. Понятие договора найма по Закону о договорных и внедоговорных обязанностях
10. Историко-правовой анализ Закона СССР "о разграничении полномочий между СССР и субъектами федерации"
11. Конституция - основной закон государства
12. Конституция, как Основной Закон РФ
13. Анализ Закона РФ N1992-1 "О налоге на добавленную стоимость"
14. Комментарий к Федеральному закону "Об информации, информатизации и защите информации"
15. Отличия законов о рекламе и закона о защите прав потребителя
16. Законы XII таблиц - памятник рабовладельческого права (Контрольная)
17. Наследование по закону согласно римскому частному праву
18. Законотворчество и механизм реализации законов
19. Проблемы законности в Российской Федерации
20. Разработка коллекции мужской одежды на весну – лето 2002 г. под девизом «Закон соответствия»
21. Вечные законы человеческого бытия в романе Шолохова "Тихий Дон"
25. Прокурорский надзор за исполнением законов
26. Проблемы укрепления законности и правопорядка
27. Обратная сила закона. Теория и практика применения на примере преступлений против собственности
28. Уголовный закон: понятие, признаки, значение
29. Вопрос о действии промежуточного закона
30. Социальные законы экологии
31. Законы и категории диалектики в педагогической практике
33. Психологический смысл психофизических законов
34. Изучение законов нормального распределения и распределения Релея
35. Второй Закон Термодинамики
36. Законы термодинамики и термодинамические параметры систем
37. Законы сохранения в механике
41. Диалектика: принципы, законы, категории
42. Законы формальной логики в аспекте категории закона
44. Отчет по бухгалтерскому учету общий, общие принципы и законы ведения бухгалтерского учета
45. Жан-Батист Сэй и его законы
46. Закон информированности-упорядоченности
47. Экономические законы и экономическая деятельность людей
48. Рынок: основы формирования, законы функционирования
49. Экономические законы и категории
50. Денежная система и её элементы. Законы денежного обращения
51. Почему в России не уважают законы
52. Политико-правовые идеи в летописях Древнерусского государства. Учение о законе и благодати Иллариона
58. Виникнення науки и поняття логічного закону
59. Законы логики
60. Основные законы правильного мышления
61. Постоянная Хаббла и эволюция стационарной вселенной
64. Закон всемирного тяготения
65. Законы Кеплера
66. Закон всемирного тяготения
68. Закон України Про зовнішньоекономічну діяльність
73. Закон Ома
74. Феномен жизни и законы неживой природы
75. Закон радиактивного распада
76. Закон Грэма
77. Проверка закона Ома для участка цепи и всей цепи. Проверка закона Кирхгофа
82. Закон всемирного тяготения
83. Принцип эквивалентности и законы сохранения
84. Законы науки
85. Нарушаемость физических законов сохранения: философская апробация и научная перспектива
89. Законность и правопорядок, понятие и соотношение
90. М. Цицерон, А.Августин, Ф.Аквинсий о праве и законах
91. Законы Ману: общая характеристика
92. Основные новации в законе об акционерных обществах
95. Защита прав и законных интересов поручителя
96. Закон о сельскохозяйственном налоге 1953 г.
97. Федеральный закон "Об актах гражданского состояния"
98. Уголовный закон
99. Обеспечение информационной безопасности и уголовный закон