![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Изготовление пластмасс |
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ КУРСОВАЯ РАБОТА ПО ТЕМЕ: ИЗГОТОВЛЕНИЕ ПЛАСТМАСС М., 2006 ОГЛАВЛЕНИЕ: ВВЕДЕНИЕ 1. ПЛАСТМАССЫ, ИХ КЛАССИФИКАЦИЯ И ФИЗИЧЕСКИЕ СВОЙСТВА 2. ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ПЛАСТМАСС 3. ТЕНДЕНЦИИ НА РЫНКЕ ПОЛИМЕРОВ ЗАКЛЮЧЕНИЕ СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ: Введение Одним их самых распространенных искусственных, отсутствующих в природе и потому получаемых в процессе химической обработки, материалов являются полимеры, пластмассы, появление которых относится к 20 веку, веку бурного развития новых технологий. Их распространенность, применение обусловлено рядом их специфических свойств, таких как малая плотность при удовлетворительной технологической прочности, высокая химическая коррозионная стойкость, хорошие электроизоляционные свойства и прочее. Их широкое применение в машиностроении, промышленности позволяет экономить расход дорогих цветных металлов, снижать массу изделий, повышать их долговечность, снизить трудоемкость продукции. Одним из преимуществ является также возможность не разделения процессов изготовления продукции путем совмещения процессов формообразования заготовки и получения готовых деталей. Процесс обработки является высоко автоматизированным, с незначительным уровнем механической доработки. 1. Пластмассы, их классификация и физические свойства Пластмассы представляют собой материалы, сложную композицию высокомолекулярных соединений, которые могут находится в аморфном и кристаллической состоянии. Иным словами, на языке науки, эти материалы представляют собой группу органических материалов, основу которых составляют синтетические или природные смолообразные высокомолекулярные вещества (полимеры), способные при нагревании и давлении формоваться, устойчиво сохраняя приданную им форму.Средняя плотность пластмасс от 15 до 2200 кг/м3. Они обладают значительной прочностью (предел прочности при сжатии 120.160 МПа, при изгибе 40.60 МПа), хорошими теплоизоляционнымии электроизоляционными качествами, коррозийной стойкостью и долговечностью. Отдельные пластмассы характеризуются прозрачностью и высокой клеящей способностью, а также способностью образовывать тонкие пленки и защитные покрытия. Пластмассы имеют исключительно важное значение как строительные материалы, частоприменяемые в комбинации с вяжущими веществами, металлами каменными материалами1. В зависимости от степени влияния теплоты эти вещества могут быть классифицированы на следующие группы: термопласты – полиэтиленовые, капроновые, полистирольные, фторопластмассы - и реактопласты - различные текстолиты, пресс материалы, стеклопластики. При нагревании исходных компонентов переходит в вязко-текучее состояние, но с завершением хим. реакции становится твердым и больше не могут размягчатся ( в отличие от термопластов). По своим физическим свойствам эти материалы могут быть также подразделены на: жесткие – имеющие незначительное удлинение, называются пластиками, мягкие - обладающие большим относительным удлинением, низкой упругостью наз. эластики. Кроме того, в зависимости от числа компонентов теория и практика химической промышленности выделяет: простые, композиционные (3-4 и 10 компонентов) 2.
Технология изготовления пластмасс Пластмассы изготовляют из связующего вещества-полимера2, наполнителя, пластификатора и ускорителя отверждения. При изготовлении цветных пластмасс в их состав вводят минеральные красители. При изготовлении пластмасс в качестве связующих веществ используют синтетические смолы, синтетические каучуки и производные целлюлозы, относящиеся к высокомолекулярным соединениям полимерам. Способы переработки пластмасс подразделяют на группы: в вязком текущем состоянии: прессованием, давлением, выдавливанием. в высокоэластичном состоянии: штамповка, пневмо - и вакуум-формовка.Получение деталей из жидких полимеров: литье. Переработка в твердом состоянии состоит из следующих этапов: резка, механическая обработка. Получение неразъемных соединений: сварка, пайка, склеивание. К прочим способам можно отнести: напыление, спекание и др.Прессование – производство выполняется в металлических пресс-формах с одной или несколькими формовыми полостями - матрицами. В них пластмасса подается в исходном состоянии в виде порошков, таблеток. Под воздействием тепла и давления пресс-материал заполняет формирующие полости, приобретая требуемую форму и размер, здесь же протекает процесс полимеризации. Пресс-форма Арматура. Недостатком является достаточно быстрый износ пресс-форм, т. к. прессование начинается при недостаточно пластичном материале. Литьевое прессование начальные этапы проводятся в отдельном устройстве – предварительная камера. повышается стойкость пресс-формы, точность и качество деталей, т. к. заполнение идет только в жидком состоянии. Но усложняется конструкция. Литьевое под давлением (наиболее эффективный метод). Применяется для термопластичных материалов. Повышенная производительность до нескольких сот деталей в минуту. Возможна полная автоматизация циклов, на машинах получают детали очень сложной формы. Процесс литья заключается в том, что расплавленный материал подается в рабочую полость стальной пресс-формы под давлением 300-500 МПа. Весь процесс осуществляется на одной машине, которая работает в автоматическом или полуавтоматическом режиме. Это наиболее известная форма литья. металл подогревОдна часть формы подвижная. Металл подается в специальный мундштук из цилиндра. Чтобы металл не остывал камера сжатия подогревается постоянно.Экструзия - пластмассу заставляют течь через фасонное отверстие – фильеру. Формование - тонкий лист пластмассы укладывается на металлические пресс-формы. Воздух откачивается. Формирование происходит под действием атмосферного давления; применяют для получения крупногабаритных и корпусных деталей. Наполнителями при изготовлении пластмасс служат различные минеральные (кварцевая мука, мел, барит, тальк) и органические (древесная мука) порошки, асбестовые, древесные и стеклянные волокна, бумага, хлопчатобумажная и стеклянная ткани, асбестовый картон, древесный шпон и др. Наполнители снижают стоимость изделий, а также улучшают отдельные их свойства, например повышают прочность, твердость, теплостойкость, кислотостойкость, снижают хрупкость, увеличивают долговечность. Пластификаторы (цинковая кислота, стеарат алюминия и др.)
придают пластмассе большую пластичность. Они должны быть химически инертными, малолетучими и нетоксичными. Катализаторы применяют для ускорения отверждения пластмасс. Например, для ускорения отверждения фенолоформальдегидного полимера ускорителем служит известь или уротропин. Например, ученым из Калифорнийского университета удалось создать в лабораторных условиях вещество, которое, как считалось ранее, существует только в межзвездном пространстве и крайне нестабильно, сообщает C ews.ru со ссылкой на Scie ceDaily. Новое вещество принадлежит к известному классу веществ — карбенам, большинство из которых нестабильны. Тем не менее, карбены в настоящее время широко используются для изготовления катализаторов, которые применяются в фармацевтике, нефтехимии и при изготовлении пластмасс. Циклопропенилидин, который в естественном виде содержится в космическом пространстве, содержит три атома углерода, расположенные треугольником, и два атома водорода. Ученые синтезировали более стабильную форму, заменив водород двумя атомами азота. Предполагается, что новое вещество будет использоваться для создания еще более мощных катализаторов3. Новые модифицированные методы производства полимеров, предложенных по результатам лабораторных экспериментов, могут улучшить процесс получения полимерной цепи из отдельных молекул мономера при одновременном уменьшении технологических потерь. В настоящее время полимеры получают посредством проведения процесса свободно-радикальной полимеризации. Изменением условий процесса можно получать полимеры с разными свойствами. Например, изменение технологических параметров и добавлением разных сомономеров можно получать либо полиэтилен для изготовления плёнок и изоляции проводов, либо для изготовления твёрдой тары и труб.В качетсве нового подхода к получению полимеров группа учёных из Университета Карнеги Меллона исследовала процесс радикальной полимеризации с переносом атома. Этот метод позволяет легко регулировать процесс роста полимерной цепи, однако, он имеет высокую цену из-за использования медного катализатора, который может безвозвратно теряться. В ходе исследования было открыто, что добавление в реактор витамина C или другого агента, абсорбирующего электроны, можно уменьшить количества медного катализатора в 1000 раз. Это приведёт к уменьшениям затрат на очистку продуктов реакции от меди, ухудшающей свойства полимеров.В тоже время в Университете Пенсельвании учёные использовали радикальную полимеризацию с переносом одиночного электрона. Этот метод имеет относительно небольшие энергозатраты на синтез. Помимо этого в нём в качестве катализатора применяется металлическая медь, что позволяет использовать в качестве растворителя чистую воду4. Отдельные виды полимерных материалов под действием теплоты, света и кислорода воздуха с течением времени изменяют свойства: теряют гибкость, эластичность, т. е. стареют. Процесс старения ускоряется при воздействии интенсивных и многократно повторяющихся нагрузок. Для предотвращения старения применяют специальные стабилизаторы (антистарители), представляющие собой различные металлорганические соединения свинца, бария, кадмия и др.
Наполнителем в этих пластмассах обычно служила древесная мука. Позже на основе фенольных смол стали получать такие широко используемые в машиностроении пластмассы, как гетинакс, текстолит и другие. Изделия из них получают горячим прессованием ткани, бумаги или фанеры, пропитанных смолой. Таким образом можно изготовить очень прочные и легкие детали (например, шестерни или подшипники), с успехом заменяющие металлические. Причем в отличие от последних, эти детали работают бесшумно и не поддаются разрушительному воздействию смазочных масел. Да и изготовлять их намного проще и дешевле, чем детали из металла. Если же в качестве наполнителя использовать стеклянные нити, образуются пластмассы, обладающие повышенной прочностью. Еще одной широко распространенной разновидностью пластмасс стали карбамидные пластмассы. Основным исходным материалом для производства карбамидных смол является мочевина. (Мочевина была первым в истории органическим веществом, которое удалось синтезировать искусственным путем; немецкий химик Велер получил ее в 1828 г. из цианистого калия, сульфата и аммония, но практическое применение она получила только через сто лет.) В 1918 году чешский химик Джон взял патент на способ изготовления новой смолы из мочевины и формальдегида
1. Производство товаров и услуг как основная функция фирмы. Факторы производства
4. Экологические проблемы производства пластмасс
5. Экономическая оценка средств производства и ценообразование товаров
9. Разработка основных разделов проекта производства работ
12. Промышленное производство в Республике Беларусь в 90-х годах ХХ-го века
15. Производство по делам об административных правонарушениях
16. Производство по делам об административных правонарушениях
17. Рассмотрение судом дел об установлении отцовства в порядке искового производства
18. Банкротство. Конкурсное производство
19. Защита прав потребителей при продаже товаров
25. Основные правовые нормы, регулирующие ввоз товаров на территорию России
26. Производства по делам о нарушении таможенных правил
28. Производство хитозана пищевого
29. Китайский фарфор и центры его производства
30. Реферат по научной монографии А.Н. Троицкого «Александр I и Наполеон» Москва, «Высшая школа»1994 г.
31. Основные черты развития первобытнообщинного, рабовладельческого и феодального способов производства
32. Применение ЭВМ в управлении производством
33. Автоматизация учета продажи товаров в ООО "Мастер-СД"
34. Разработка САПР трубчатых реакторов для производства малеинового ангидрида
35. Правильные и полуправильные многогранники
37. Технология производства молока
41. Прокурор в досудебном производстве по уголовному делу
42. Охрана окружающей среды, связанная с производством серной кислоты
43. Расследование и учёт несчастных случаев на производстве
44. Проблемы экологии сельскохозяйственного производства
45. Проектирование систем очистки выбросов цеха литья пластмасс
46. Развитие творческих способностей учащихся на уроках "Технология швейного производства"
47. Линия производства филе минтая мороженого, 25 т/сут
48. Потребительские свойства сыров и формирование их в процессе производства
49. Бизнес-план "Производство маргарина"
50. Производство диетического хлеба
51. Шпаргалка по товароведению промышленых товаров (Пермь)
52. Организация производства (шпаргалка)
57. Классификация и производство отливок из хладостойкой стали. Отливки из магниевых сплавов
59. Разработка технологии получения отливок «корпус» из сплава МЛ5 в условиях массового производства
62. Качественные электроды для ручной дуговой сварки и их производство
63. Технология производства К56ИЕ10 и серии м (с К426 и К224 (WinWord)
64. Качество продукции машиностроительного производства
65. Производство красителя "Кислотного алого"
66. Проектирование производства и систем управления мини-пекарень
67. История создания и технология производства кирпича
68. Получение препарата РНК-азы из автолизных дрожжей. Мощность производства 80,3 кг (год (Курсовая)
73. Основы металлургичесуого производства
75. Прокатное производство. План и транспорт прокатных цехов
76. Технология производства синергической активной пищевой добавки "Эхинацея Янтарная"
77. Экологические проблемы на пищевых производствах
78. Проектирование систем очистки выбросов цеха литья пластмасс
79. Производство электроэнергии на гидростанциях
80. Технология производства фенопластов
81. Проектирование технологии производства земляных работ
82. Характеристика материалов для производства мебели
83. Моделирование процессов переработки пластмасс
84. Использование морских - возобновляемых ресурсов в производстве электроэнергии
85. Производство электроэнергии
91. Психология труда (Обзорный реферат по психологии труда)
92. Технология и автоматизация производства РЭА
94. Несколько рефератов по Исламу
95. Механизация сельскохозяйственного производства
96. Механизация и электрификация сельскохозяйственного производства
98. Учет затрат на производство зерна
99. Экономика производства кормовых культур в полевых условиях
100. Экономическая эффективность производства молока на примере ФГОУ СПО "Ялуторовский Аграрный колледж"