![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Окисно-відновні реакції і електрохімічні процеси в гальванічних елементах. Електродні потенціали |
Міністерство ХХХХХХХХХХХХХХХХХ ХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХКафедра ХХХХХХХХХХХРеферат на тему:«Окисно-відновні реакції і електрохімічні процеси в гальванічних елементах. Електродні потенціали» Виконавець: Керівник: Луганськ, 2004ПЛАНВступ 1.Окислювально-відновні реакції 1.1.Напівреакції 2.Гальванічні елементи 3.Електрорушійна сила (е.р.с.) гальванічного елементу 3.1.Стандартні електродні потенціали 3.2.Окислювачі і відновлювачи 4.Мимовільність і ступінь протікання окислювально-відновних реакцій 4.1.Е.р.с. і зміна вільної енергії 4.2.Е.р.с. і константа рівноваги 4.3.Е.р.с. і концентрація 5.Гальванічні елементи, котрі застосовуються на практиці 5.1.Свинцева акумуляторна батарея 5.2.Сухий елемент 5.3. i-Cd батареї 5.4.Паливні елементи Висновки Список використаних джерел Вступ Для проведення багатьох важливих хімічних процесів необхідна електрична енергія, інші ж процеси, навпаки, можуть дати її. Оскільки електрика відіграє важливу роль у сучасній цивілізації, цікаво ознайомитися з тією областю хімії, що називається електрохімією і розглядає взаємозв'язок, що існує між електрикою і хімічними реакціями . Електрохімія – це розділ фізичної хімії, що вивчає властивості систем, що містять рухливі іони (розчинів, розплавів чи твердих електролітів), а також явища, що виникають на межі двох фаз (наприклад, металу і розчину електроліту) унаслідок переносу заряджених часток (електронів та іонів). Електрохімія розробляє наукові основи електролізу, електросинтезу, гальванотехніки, захисту металів від корозії, створення хімічних джерел струму й ін. Електрохімічні процеси також відіграють важливу роль у життєдіяльності організмів – передача нервових імпульсів – це теж електрохімічний процес . Знайомство з електрохімією дозволяє одержати уявлення про такі різноманітні питання, як будова і дія електричних батарей, мимовільність протікання хімічних реакцій, електроосадження металів для одержання металевих покрить і корозія металів. Оскільки електричний струм зв'язаний з переміщенням електричних зарядів, зокрема електронів, в електрохімії увага зосереджена на реакціях, у яких електрони переносяться від однієї речовини до іншої. Такі реакції називаються окислювально-відновними . Окислювально-відновні реакції Як відомо, окислювання являє собою не щось інше, як підвищення ступеня окислювання (відщіплення електронів), а відновлення як зменшення ступеня окислювання (приєднання електронів). Якщо одна речовина приєднує електрони і тим самим відновлюється, то інша речовина повинна віддавати електрони і, отже, окислятися. Окислювання і відновлення повинні йти одночасно, одне з них не може відбуватися без іншого. Розглянемо, наприклад, реакцію між залізом і хлоридною кислотою: 0 1–1 2–1 0 Fe (тв.) 2НCl (м.) FеСl2 (тв.) Н2 (м.) (1.1) Ступінь окислювання кожного елемента зазначена над його символом. Розглядаючи ступеня окислювання, зазначені в рівнянні, ми переконуємося, що залізо окисляється, у той час як HCl відновлюється. Під час обговорення окислювально-відновних реакцій прийнято вважати речовину, що викликає окислювання, окислювачем.
Окислювач має підвищену спорідненість до електронів і викликає окислювання інших речовин, відщіпляючи від них електрони. Оскільки окислювач приєднує електрони, він відновлюється. Аналогічна речовина, що викликає відновлення, називається відновлювачем. У реакції (1.1) HCl – це окислювач, a Fe – відновлювач. Речовина, відновлена в реакції, завжди є окислювачем, а речовина, яка окисляється – відновлювачем . Напівреакції Хоча окислювання і відновлення повинні відбуватися одночасно, часто зручно розглядати їх як окремі процеси. Наприклад, реакцію окислювання іона S 2 іоном Fe3 S 2 (водн.) 2Fе3 (водн.) S 4 (водн.) 2Fе2 (водн.) (1.2) можна уявити собі як сукупність двох процесів: 1) окислювання S 2 , описуваного рівнянням (1.3), і 2) відновлення Fe3 , описуваного рівнянням (1.4): Окислювання: S 2 (водн.) S 4 (водн.) 2е– (1.3) Відновлення: 2Fе3 (водн.) 2е– 2Fе2 (водн.) (1.4) Такі рівняння, що описують тільки окислювання чи тільки відновлення, називаються напівреакціями. Як видно з рівнянь (1.3) і (1.4), число електронів, що втрачається в процесі окислювання, тобто в окисній напівреакції, повинно дорівнювати числу електронів, що здобуваються у відбудовній напівреакції. Якщо ця умова виконана і напівреакції записані стехіометричними повними рівняннями, при їхньому підсумовуванні виходить стехіометричне збалансоване повне рівняння окислювально-відновної реакції . Гальванічні елементи Частіше енергію, що виділяється в будь-якій мимовільній окислювально-відновній реакції, можна безпосередньо використовувати для виконання електричної роботи. Це здійснено в гальванічному елементі, що представляє собою пристрій, у якому перенос електронів відбувається по зовнішньому шляху, а не безпосередньо між реагентами. Одна з таких мимовільних реакцій відбувається, якщо шматочок цинку помістити в розчин, що містить іони Cu2 . При протіканні цієї реакції блакитне фарбування розчину, характерна для іонів Cu2 (водн.), зникає, і на поверхні цинку починає осаджуватися металева мідь. Одночасно відбувається розчинення цинку. Ці перетворення, показані на мал. 2.1, описуються рівнянням: Z (тв.) Cu2 (водн.) Z 2 (водн.) Cu (тв.) (2.1) На мал. 2.2 показаний гальванічний елемент, у якому використовується окислювально-відновна реакція між Z і Cu2 , описувана рівнянням (2.1). Хоча експериментальний пристрій, показаний на мал. 2.2, складніше, ніж зображений на мал. 2.1, важливо переконатися, що в обох випадках мова йде про одну і ту ж саму хімічну реакцію. Головне розходження між цими двома експериментами полягає в тому, що на мал. 2.2 металевий цинк і Cu2 (водн.) не знаходяться у безпосередньому контакті один з одним. Отже, Cu2 може відновлюватися тільки в результаті перетіканню електронів по дроту, що з'єднує Z і Cu (тобто по зовнішньому ланцюгу). Два металевих елементи, що з'єднані зовнішнім ланцюгом, називаються електродами. По визначенню електрод, на якому відбувається окислювання, називається анодом, а електрод, на якому відбувається відновлення, називається катодом. У розглянутому прикладі Z є анодом, а Cu – катодом: Окислювання на аноді Z (тв.) Z 2 (вoдн.)
2е– Відновлення на катоді Cu2 (водн.) 2е– Cu (тв.) Гальванічний елемент можна розглядати як пристрій, котрий складається з двох напівелементів, один із яких відповідає процесу окислювання, а інший – процесу відновлення. При окислюванні металевого цинку на аноді виникають вільні електрони. Вони перетікають по зовнішньому ланцюгу до катода, де відбувається їхнє поглинання в процесі відновлення Cu2 (водн.). Угода про вибір знаків для електродів гальванічного елемента заснована на розгляді зовнішнього ланцюга. Електрони мимовільно переміщаються від негативного електрода до позитивного, отже, анод є негативним електродом, а катод – позитивним. Під час роботи гальванічного елемента, зображеного на мал. 2.2, окислювання Z приводить до появи додаткових іонів Z 2 в анодному відділенні елемента. Якщо не існує способу нейтралізації їхнього позитивного заряду, подальше окислювання припиняється. Подібно цьому відновленню Cu2 викликає появу надлишкового негативного заряду в розчині в катодному відділенні. Принцип електронейтральності дотримується завдяки міграції іонів через «сольовий місток», що показаний на мал. 2.2. Сольовий місток являє собою U-образну трубку, що містить розчин якого-небудь електроліту, наприклад a O3 (водн.), іони якого не реагують з іншими іонами в гальванічному елементі, а також з матеріалами, з яких зроблені електроди. Кінці U-образної трубки закривають скловатою чи гелем, просоченим електролітом, щоб при перевертанні трубки електроліт не вилився з неї. При протіканні на електродах процесів окислювання і відновлення іони із сольового містка проникають в анодне і катодне відділення гальванічного елементу, щоб нейтралізувати заряди, що там утворяться. Аніони мігрують у напрямку до анода, а катіони – у напрямку до катода. Частіше в зовнішньому ланцюзі не протікає ніякого струму доти, поки іони не одержать можливість мігрувати через розчин з одного електродного відділення в інше і тим самим замикати електричний ланцюг . Електрорушійна сила (е.р.с.) гальванічного елементу Можна уявити собі, що в гальванічного елемента існує «рушійна сила» (чи «електричний тиск»), що переміщає електрони по зовнішньому ланцюгу елементу. Ця рушійна сила називається електрорушійною силою (скорочено е.р.с.) елементу; е.р.с. виміряється в одиницях електричної напруги (вольтах) і інакше називається напругою, чи потенціалом, гальванічного елемента. Один вольт являє собою е.р.с., необхідну для того, щоб заряд у 1 кулон придбав енергію в 1 Дж: 1 В = 1 Дж/Кл Точний вимір е.р.с. гальванічного елемента вимагає застосування спеціальних приладів. Ці виміри варто виконувати таким чином, щоб через гальванічний елемент протікав мізерно малий струм. Якщо допустити протікання значного струму, то напруга гальванічного елемента знижується, тому що він має внутрішній опір, і, крім того, навколо електродів відбуваються зміни концентрацій іонів у розчинах. Гальванічний елемент, зображений на мал. 2.2, при роботі в стандартних умовах створює е.р.с. величиною 1,10 В. Нагадаємо, що стандартним умовам відповідають 1 М концентрації реагентів і продуктів у розчинах і тиску в 1 атм.
Автотранспорт стане безгучним. Повнше використати паливо, не викидати разом з вихлопними газами тепло «ось що обця в майбутньому електрохмя. А згодом, повол, починаючи з дрбного, «установок на сотн й тисяч кловат, «нов джерела струму завоюють мцн позиц й у великй енергетиц. Струм, який вони даватимуть, обйдеться значно дешевше. Виника ще й така думка: комбнувати паливний елемент з ядерним реактором. Можливо, частинки, утворен при атомному розщепленн, стануть постачальниками пального для паливного елемента, розкладаючи воду на кисень водень? Адже ц частинки здатн руйнувати молекули, перегруповувати атоми. Проблема живлення ново енергоустановки була б виршена. Звичайно, не всюди, потреба в такй комбнац, а тльки там, де важко дстати нше пальне. Варто подумати про те, як акумулювати енергю. Електрохмчн акумулятори дорого коштують недосконал, та електрохмя створю паливн елементи, вона перетворю хмчну енергю в електричну, а останню можна знову обернути на хмчну. Чи не правитиме нам паливний елемент за акумулятор? Акумулювання енерг ма особливе значення для сонячних станцй, що працюють тльки вдень
2. Природно-ресурсний потенціал, його суть та структура
3. Механізми інактивації потенціал-залежних К+ каналів
4. Сутність і структура природно-ресурсного потенціалу
5. Ресурсозбереження – головний напрям використання природно-ресурсного потенціалу
10. Розвивальний потенціал бесіди як методу навчання у сучасній початковій школі
11. Формування творчого потенціалу у студентів 1–4 курсу
12. Теоретико-методологічний потенціал концепції комунікативної раціональності Ю. Габермаса
13. Рекреаційний потенціал Північно-західного району Російської Федерації
15. Аналіз ефективності використання виробничого потенціалу підприємства ВАТ "Жовтоводський хлібозавод"
16. Експортний потенціал України та її регіонів
17. Науковий потенціал незалежної України
18. Фінансовий потенціал розвитку підприємства
19. Трудові ресурси і трудовий потенціал суспільства
20. Ревізія як елемент методу економічного контролю
25. Продвинутые методы Ганемана. LМ-потенции: теория и практика
26. Производство красителя "Кислотного алого"
27. Анализ операций умножения и деления в конкретной модели АЛУ
28. Социально-экономический потенциал села
29. Ал-фараби
30. Влияние поверхностного потенциала воды на реологические свойства дисперсных систем
32. МЕХАНІЗМ ЕКОНОМІЧНОГО ЗРОСТАННЯ В РИНКОВІЙ ЕКОНОМІЦІ
33. Экономический рост и кадровый потенциал России
34. Рекреационный потенциал, проблемы и перспективы развития туризма в Камчатской области
35. Особливості економічного розвитку Київської Русі
36. Алая буква. Готорн Натаниэль
37. Аль Капоне
41. Расчет адгезионных характеристик металлов в модели обобщенного потенциала Хейне-Абаренкова
42. Формирование кадрового потенциала организации
43. Внутрифирменное обучение как технология развития кадрового потенциала организации
45. Конъюнктура рынка и основные показатели ее изучения. Анализ потенциала и емкости рынка
46. Аль-уд (ла-уд)
47. О понятии интеллектуального потенциала и способах его измерения
48. Соціал-демократична концепція держави та влади
49. Личностное в личности: личностный потенциал как основа самодетерминации
50. 100 идей для развития творческого потенциала сотрудников
51. Анализ операций умножения и деления в конкретной модели АЛУ
52. Технология использования социокультурного потенциала телерекламы
53. Технология использования социокультурного потенциала телерекламы
57. Экспортный и транзитный потенциал Украины
58. Розрахунок вольт-амперної характеристики сонячного елемента при врахуванні зміни поверхневої рекомбі
61. Трудовой потенциал и проблемы занятости малочисленных народов севера России
62. Ветроэнергетический потенциал Калининградской области
63. Характеристика и анализ природно-ресурсного потенциала приморского края
64. Общая характеристика водноресурсного потенциала
65. Характеристика природно-ресурсного потенциала России
66. Міжнародна економічна система та її головні елементи
67. Трудовой потенциал Украины
68. Экономическая ситуация и использование трудового потенциала республики Дагестан
69. Проблемы управления процессами формирования и использования кадрового потенциала предприятия
73. Определение энергетического потенциала РЛ ИП
74. Абу Али Ибн Сина
75. Али-Бей
76. Ал-Джахиз
77. Аль-Газали Абу Хамид Мухаммад Ибн Мухаммед
79. Луиджи Гальвани
80. Аль-Вазан Аль-Хасан Ибн Мохаммед
81. Методика та техніка складання річного фінансового звіту
82. Экономический и природно-ресурсный потенциал Франции и его использование
83. Оценка рекреационного потенциала Севера России
84. Ущелье Ала-Арча в Кыргызстане
85. Изменения окислительно-восстановительного потенциала среды
89. Входження Північного Причорномор’я Криму та Правобережної України до складу Росії укр
90. Вивчення біогеохімічного циклу магнію
92. Фантастичний світ Рабле: матеріали до уроку по роману «Гаргантюа та Пантагрюель»
93. Электромагнитный векторный потенциал как следствие дуальности параметров частиц микромира
94. Скрытый потенциал капиталовложений
97. Этический смысл "Посланий" Ал. Павла (I в. н.э.)
98. Трудовой потенциал экономики
99. Инвестиционный потенциал как основа экономического роста