![]() |
|
сделать стартовой | добавить в избранное |
![]() |
Промышленность и Производство
Техника
Строение галактики |
Строение галактики Возможны ли полеты человека к другим звездам и другим галактикам? Важнейшей особенностью небесных тел является их свойство объединяться в системы. Земля и её спутник Луна образуют систему из двух тел. Так как размеры Луны не так уж малы в сравнении с размерами Земли, то некоторые астрономы склонны рассматривать Землю и Луну как двойную систему Юпитер и Сатурн со своими спутниками- примеры более богатых систем. Солнце, девять планет с их спутниками, множество малых планет, комет и метеоров образуют систему более высокого порядка- Солнечную систему. Не образуют ли систем и звезды? Первое систематическое исследование этого вопроса выполнил во второй половине 18 века английский астроном Вильям Гершель. Он производил в разных областях неба подсчеты звёзд, наблюдаемых в поле зрения его телескопа. Оказалось, что на небе можно наметить большой круг, рассекающий все небо на две части и обладающий тем свойством, что при приближении к нему с любой стороны число звезд, видимых в поле зрения телескопа, неуклонно возрастает и на самом круге становится небольшим. Как раз вдоль этого круга, получившего название галактического экватора, стелется Млечный Путь, опоясывающая небо чуть светящаяся полоса, образованная сиянием слабых дальних звезд. Гершель правильно объяснил обнаруженное им явление тем, что наблюдаемые нами звезды образуют гигантскую звездную систему, которая сплюснута к галактическому экватору. И все же, хотя вслед за Гершелем исследованием строения нашей звездной системы- Галактики занимались известные астрономы- В. Струве, Каптейн и другие, само представление л существовании Галактики как обособленной звездной системы являлось до тех пор, пока не были обнаружены объекты, находящиеся вне Галактики. Это произошло только в 20 годы нашего века, когда выяснилось, что спиралеобразные и некоторые другие туманности являются гигантскими звездными системами, находящимися на огромных расстояниях от нас и сравнимыми по строению и размерам с нашей Галактикой. Выяснилось, что существует множество других звездных систем- галактик, весьма разнообразных по форме и по составу, причем среди них имеются галактики, очень похожие на нашу. Это обстоятельство оказалось очень важным. Наше положение внутри Галактики, с одной стороны, облегчает её исследование, а с другой- затрудняет, так как для изучения строения системы выгоднее её рассматривать не изнутри, а со стороны. Форма Галактики напоминает круглый сильно сжатый диск. Как и диск, Галактика имеет плоскость симметрии, разделяющую её на две равные части и ось симметрии, проходящую через центр системы и перпендикулярную к плоскостям симметрии. Но у всякого диска есть точно обрисованная поверхность- граница. У нашей звездной системы такой чётко очерченной границы нет, также как нет чёткой верхней границы у атмосферы Земли. В Галактике звёзды располагаются тем теснее, чем ближе данное место к плоскости симметрии Галактики и чем ближе оно к её плоскости симметрии. Наибольшая звёздная плотность в самом центре Галактики. Здесь на каждый кубический парсек приходится несколько тысяч звёзд, т.е
. в центральных областях Галактики звёздная плотность во много раз больше, чем в окрестностях Солнца. При удалении от плоскости и оси симметрии звёздная плотность убывает, при чём при удалении от плоскости симметрии она убывает значительно быстрее. По этому если бы мы условились считать границей Галактики те места, где звёздная плотность уже очень мала и составляет одну звезду на 100 пс, то очерченное этой границей тело было бы сильно сжатым круглым диском. Если границей считать область, где звёздная плотность ещё меньше и составляет одну звезду на 10 000 пс, то снова очерченной границей тело будет диском примерно той же формы, но только больших размеров. По этому нельзя вполне определённо говорить о размерах Галактики. Если всё-таки границами нашей звёздной системы считать места, где одна звезда приходится на 1 000 пс пространства, то диаметр Галактики приблизительно равен 30 000 пс, а её толщена 2 500 пс. Таким образом, Галактика- действительно сильно сжатая система: её диаметр в 12 раз больше толщины. Количество звёзд в Галактике огромно. По современным данным оно превосходит сто миллиардов, т.е. примерно в 25 раз превосходит число жителей нашей планеты. Существование газа в пространстве между звёздами впервые было обнаружено по присутствию в спектрах звёзд линий поглощения, вызываемых межзвёздным кальцием и межзвёздным натрием. Эти кальций и натрий заполняют всё пространство между наблюдателем и звездой и со звездой непосредственно не связаны. После кальция и натрия было установлено присутствие кислорода, калия,титана и других элементов, а также некоторых молекулярных соединений: циана, углеводорода и др. Плотность межзвёздного газа можно определить по интенсивности его линий. Как и следовало ожидать, она оказалось очень малой. Плотность межзвёздного натрия, например, близ плоскости Галактики, где он наиболее плотен, соответствует одному атому на 10 000 см пространства. Долгое время не удавалось обнаружить межзвёздный водород, хотя в звёздах он самый обильный газ. Это объясняется особенностями физического строения атома водорода и характером поля излучения Галактики. Близ плоскости Галактики один атом водорода приходится на 2-3 см пространства. Это значит, что плоскость всей газовой материи около плоскости Галактики составляет 5-8 10 / 25 см, масса газа и других элементов ничтожно мала. Распределён межзвёздный газ неравномерно, местами образуя облака с плотностью в десятки раз выше средней, а местами создавая разряжения. При удалении от плоскости Галактики средняя плотность межзвёздного газа быстро падает. Общая его масса в Галактике составляет 0,01-0,02 общей массы всех звёзд. Звёзды- горячие гиганты, излучающие большое количество ультрафиолетовых квантов, ионизируют вокруг себя межзвёздный водород в значительной области. Размер зоны ионизации в очень большой степени зависит от температуры и светимости звезды. Вне зон ионизации почти весь водород находится в нейтральном состоянии. Таким образом, все пространство Галактики можно разделить на зоны ионизированного водорода и где водорода неионизирован. Датский астроном Стремгрен теоретически показал, что постепенного перехода от области , где водород практически весь ионизирован, к области, где он нейтрален, нет.
В настоящее время разработан метод определения закона вращения всей массы нейтрального водорода Галактики по совокупности профилей его эмиссионной линии 21 см. Можно полагать, что нейтральный водород в Галактике вращается так же или почти так же, как и сама Галактика. Тогда становится известным и закон вращения Галактики. Этот метод в настоящее время дает наиболее надежные данные о законе вращения нашей звездной системы, т.е. данные о том, как изменяется угловая скорость вращения системы по мере удаления от центра Галактики к её окраинным областям. Для центральных областей угловую скорость вращения пока определить не удается. Как видно, угловая скорость вращения Галактики убывает по мере удаления её от центра сначала быстро, а затем медленнее . На расстоянии 8 кпс. от центра угловая скорость равна 0, 0061 в год. Это соответствует периоду обращения 212 млн. лет. В районе Солнца( 10 кпс. от центра Галактики) угловая скорость равна 0, 0047 в год, причем период обращения 275 млн. лет. Обычно именно эту величину- период обращения Солнца вместе с окрестными звездами около центра нашей звездной системы- считают периодом вращения Галактики и называют галактическим годом. Но нужно понимать, что общего периода для Галактики нет, она вращается не как твердое тело. В районе Солнца скорость равна 220 кмс. Это значит, что в своём движении вокруг центра Галактики Солнце и окрестные звёзды пролетают в секунду 220 км. Период вращения Галактики в районе Солнца равен приблизительно 275 млн. лет , а области , расположенные от центра Галактики дальше Солнца, совершают оборот медленнее: период вращения растет на 1 млн. лет при увеличении расстояния от центра Галактики приблизительно на 30 пс. Кроме газа в пространстве между звездами имеются пылинки. Размеры их очень малы и располагаются они на значительных расстояниях друг от друга; среднее расстояние между пылинками- соседями составляет около ста метров. Поэтому средняя плотность пылевой материи Галактики примерно в 100 раз меньше общей массы газа и в 5000- 10 000 раз меньше общей массы всех звезд. Поэтому динамическая роль пыли в Галактике весьма незначительна. В Галактике пылевая материя сильнее поглощает голубые и синие лучи, чем желтые и красные. В некотором отношении туман, в который погружена Галактика , существенно отличается от тумана, который мы наблюдаем на Земле. Отличие состоит в том, что вся масса пылевой материи имеет крайне неоднородную структуру. Она не распределена гладким слоем, а собрана в отдельные облака различной формы и размеров. Поэтому поглощение света в Галактике носит пятнистый характер. Пылевая и газовая материи в Галактике обычно перемешаны, но пропорции их в различных местах различны. Встречаются газовые облака, в которых пыль преобладает. Для обозначения рассеянной в Галактике материи газа, пыли и смеси газа и пыли- употребляется общий термин “ диффузная материя” . Форма Галактики несколько отличается от диска тем, что в центральной части её имеется утолщение, ядро. Это ядро, хотя в нём сосредоточено большое число звёзд, долгое время не удавалось наблюдать, потому, что около плоскости симметрии Галактики наряду со светящейся материей звёзд имеются огромные темные облака пыли, поглощающие свет летящих за ними звёзд.
Сегре, перевод с английского, т. 2, М., 1955; Юз Д., Нейтронные исследования на ядерных котлах, перевод с английского, М., 1954; его же, Нейтронные эффективные сечения, перевод с английского, М., 1959; Власов Н. А., Нейтроны, 2 изд., М., 1971; Гуревич И. И., Тарасов Л. В., Физика нейтронов низких энергий, М., 1965. Ф. Л. Шапиро. Медлер Иоганн Генрих Ме'длер (Mädler, Maedler) Иоганн Генрих (29.5.1794, Берлин, — 13 или 14.3.1874, Ганновер), немецкий астроном. В 1840—65 работал в России; был профессором Дерптского (Тартуского) университета и директором университетской обсерватории, где продолжил работы В. Я. Струве по наблюдению двойных звёзд. М. произвёл перенаблюдение 3222 звёзд каталога Дж. Брадлея , изучил их собственные движения. Созданная им так называемая теория «центрального солнца» явилась первой попыткой изучения строения Галактики, основанной на движении звёзд. Однако его предположение о том, что центр гравитации Галактики расположен в звёздном скоплении Плеяд, оказалось несостоятельным. М. составил подробную карту Луны и написал ряд популярных книг по астрономии. Лит.: W. Т. L., Johann Heinrich von Mädler... [Некролог], «Monthly Notices of the Royal Astronomical Society», 1875, v. 35, № 4
1. Размеры и строение нашей галактики
3. Ядра планет, солнца и нашей галактики
5. Абсолютно все, что нас окружает, связано с вращением галактики и вселенной или основы строения мира
10. Строение и эволюция звезд и планет
11. Синапсы (строение, структура, функции)
12. Грибы. Строение. Питание. Размножение. Происхождение. Развитие
14. Слуховой анализатор. Строение и функции сердца
15. Бионика - наука изучающая строение живых существ для целей техники
16. Аксиоматический метод. Логическое строение геометрии
17. Строение, свойства опухолей
18. Строение, свойства и биологическая роль витаминов В-12 и В-15
19. Общий план строения стенки желудочно-кишечного тракта
21. История открытий в области строения атомного ядра
25. Регуляция менструальной функции. Строение репродуктивной системы. Формирование плаценты
26. Гистология (Схема строения животной клетки по данным электронного микроскопа )
27. Строение и фyнкции желудка
28. Строение и функции гортани
29. Строение мышц
30. Клинико-анатомические особенности строения костной орбиты - по книге профессора Краснова
31. Основы теории вихревой гравитации и строения вселенной
32. Оболочечное строение элементарных частиц
33. Законы движения небесных тел и строение Солнечной системы
34. Развитие учения о строении вещества
35. История физики: строение материи
36. Учет хлоридной коррозии при прогнозировании срока службы железобетонных пролетных строений
37. Аномалии и дефекты физического строения
41. Особенности строения сердца спортсменов
42. Концепция строения материи
43. Теория Эмпидокла о строениии материи
44. Белки, их строение и состав
45. Строение атома
46. Строение и свойства вещества
47. Строение атмосферы, гидросферы и литосферы
48. Накопление капитала, его строение
49. Строение Солнца
50. Строение нервной системы человека
51. Анатомическое строение ногтей
52. К вопросу о строении активных центров полимеризации бутадиена под действием каталитических систем.
57. Особенности строения акчагыльских отложений в нижнем течении р.Терешки (Саратовское Правобережье)
58. Геологическое строение и полезные ископаемые Азии
59. Строение газовой оболочки Земли
60. Состав и строение мантии земли
61. Глубинное строение Центрально-Камчатской депрессии и структурная позиция вулканов
62. Австралия:строение поверхности
63. Геологическое строение и почвы Москвы
64. Компьютерные технологии как инструмент получения новой информации о строении океанических разломов
65. Видеоадаптеры, классификация, особенности строения и работы
66. Оболочечное строение элементарных частиц
67. Федерация независимых профсоюзов России: организационное строение, этапы становления
69. Мотонейрон, его строение и функции
73. Строение и жизнедеятельность амебы
74. Строение и органы центральной нервной системы
76. Строение и размножение лишайников
77. Строение и состав живой клетки
78. Строение и функции биомеханической системы двигательного аппарата
81. Строение и функции хлоропластов. Геном пластид. Пропластиды
82. Строение организма человека: клетки, ткани, органы, нервная система и мозг
83. Строение растительной клетки. Ткани растений
84. Строение цветкового растения: корень, цветок и плод
85. Структура и строение нейрона
89. Античный период в истории естествознания. Состав и строение клетки
91. Витамины: строение, свойства, использование, значение для растений
92. Органы пищеварения животных. Строение черепа
93. Строение и применение древесины
94. Строение, основные свойства и применение древесины
95. Характеристика свойств и строения древесины сосны
96. Пользователи бухгалтерского учета и строение бухгалтерского баланса