Библиотека Рефераты Курсовые Дипломы Поиск
Библиотека Рефераты Курсовые Дипломы Поиск
сделать стартовой добавить в избранное
Кефирный гриб на сайте www.za4et.net.ru

Химия Химия

Медь

Ночник-проектор "Звездное небо и планеты", фиолетовый.
Оригинальный светильник - ночник - проектор. Корпус поворачивается от руки. Источник света: 1) Лампочка (от карманных фонариков) 2) Три
330 руб
Раздел: Ночники
Фонарь желаний бумажный, оранжевый.
В комплекте: фонарик, горелка. Оформление упаковки - 100% полностью на русском языке. Форма купола "перевёрнутая груша" как у
87 руб
Раздел: Небесные фонарики
Горшок торфяной для цветов.
Рекомендуются для выращивания крупной рассады различных овощных и цветочных, а также для укоренения саженцев декоративных, плодовых и
7 руб
Раздел: Горшки, ящики для рассады

Медь (лат. Cuprum), Cu (читается «купрум»), химический элемент I группы периодической системы Менделеева, атомный номер 29, атомная масса 63,546. Природная медь состоит из двух стабильных нуклидов 63Cu (69,09% по массе) и 65Cu (30,91%). Конфигурация двух внешних электронных слоев нейтрального атома меди 3s2p6d104s1. Образует соединения в степенях окисления 2 (валентность II) и 1 (валентность I), очень редко проявляет степени окисления 3 и 4. В периодической системе Менделеева медь расположена в четвертом периоде и входит в группу IВ, к которой относятся такие благородные металлы, как серебро (Ag) и золото (Au). Радиус нейтрального атома меди 0,128 нм, радиус иона Cu от 0,060 нм (координационное число 2) до 0,091 нм (координационное число 6), иона Cu2 — от 0,071 нм (координационное число 2) до 0,087 нм (координационное число 6). Энергии последовательной ионизации атома меди 7,726; 20,291; 36,8; 58,9 и 82,7 эВ. Сродство к электрону 1,8 эВ. Работа выхода электрона 4,36 эВ. По шкале Полинга электроотрицательность меди 1,9; медь принадлежит к числу переходных металлов. Стандартный электродный потенциал Cu/Cu2 0,339 В. В ряду стандартных потенциалов медь расположена правее водорода (H) и ни из воды, ни из кислот водорода не вытесняет. Простое вещество медь — красивый розовато-красный пластичный металл. Название: латинское название меди происходит от названия острова Кипра (Cuprus), где в древности добывали медную руду; однозначного объяснения происхождения этого слова в русском языке нет. Физические и химические свойства: кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0,36150 нм. Плотность 8,92 г/см3, температура плавления 1083,4°C, температура кипения 2567°C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20°C удельное сопротивление 1,68·10–3 Ом·м). В сухой атмосфере медь практически не изменяется. Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH)2·CuCO3. Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди. Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной. Патина предохраняет металл от дальнейшего разрушения. Для создания на художественных предметах «налета старины» на них наносят слой меди, который затем специально патинируется. При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO. Красновато-коричневый оксид меди (I) Cu2O при растворении в бромо- и иодоводородной кислотах образует, соответственно, бромид меди (I) CuBr и иодид меди (I) CuI. При взаимодействии Cu2O с разбавленной серной кислотой возникают медь и сульфат меди: Cu2O H2SO4 = Cu CuSO4 H2O. При нагревании на воздухе или в кислороде Cu2O окисляется до CuO, при нагревании в токе водорода - восстанавливается до свободного металла.

Черный оксид меди (II) CuO, как и Cu2O, c водой не реагирует. При взаимодействии CuO с кислотами образуются соли меди (II): CuO H2SO4 = CuSO4 H2O При сплавлении со щелочами CuO образуются купраты, например: CuO 2 aOH = a2CuO2 H2O Нагревание Cu2O в инертной атмосфере приводит к реакции диспропорционирования: Cu2O = CuO Cu. Такие восстановители, как водород, метан, аммиак, оксид углерода (II) и другие восстанавливают CuO до свободной меди, например: CuO СО = Cu СО2. Кроме оксидов меди Cu2O и CuO, получен также темно-красный оксид меди (III) Cu2O3, обладающий сильными окислительными свойствами. Медь реагирует с галогенами, например, при нагревании хлор реагирует с медью с образованием темно-коричневого дихлорида CuCl2. Существуют также дифторид меди CuF2 и дибромид меди CuBr2, но дииодида меди нет. И CuCl2, и CuBr2 хорошо растворимы в воде, при этом ионы меди гидратируются и образуют голубые растворы. При реакции CuCl2 с порошком металлической меди образуется бесцветный нерастворимый в воде хлорид меди (I) CuCl. Эта соль легко растворяется в концентрированной соляной кислоте, причем образуются комплексные анионы 3–, например за счет процесса: CuCl НCl = H При сплавлении меди с серой образуетcя нерастворимый в воде сульфид Cu2S. Сульфид меди (II) CuS выпадает в осадок, например, при пропускании сероводорода через раствор соли меди (II): H2S CuSO4 = CuS H2SO4 C водородом, азотом, графитом, кремнием медь не реагирует. При контакте с водородом медь становится хрупкой (так называемая «водородная болезнь» меди) из-за растворения водорода в этом металле. В присутствии окислителей, прежде всего кислорода, медь может реагировать с соляной кислотой и разбавленной серной кислотой, но водород при этом не выделяется: 2Cu 4HCl O2 = 2CuCl2 2H2O. С азотной кислотой различных концентраций медь реагирует довольно активно, при этом образуется нитрат меди (II) и выделяются различные оксиды азота. Например, с 30%-й азотной кислотой реакция меди протекает так: 3Cu 8H O3 = 3Cu( O3)2 2 O 4H2O. С концентрированной серной кислотой медь реагирует при сильном нагревании: Cu 2H2SO4 = CuSO4 SO2 2H2O. Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II): 2FeCl3 Cu = CuCl2 2FeCl2 Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди. Ионы меди Cu2 легко образуют комплексы с аммиаком, например, состава 2 . При пропускании через аммиачные растворы солей меди ацетилена С2Н2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC2. Гидроксид меди Cu(OH)2 характеризуется преобладанием основных свойств. Он реагирует с кислотами с образованием соли и воды, например: Сu(OH)2 2H O3 = Cu( O3)2 2H2O. Но Сu(OH)2 реагирует и с концентрированными растворами щелочей, при этом образуются соответствующие купраты, например: Сu(OH)2 2 aOH = a2 Если в медноаммиачный раствор, полученный растворением Сu(OH)2 или основного сульфата меди в аммиаке, поместить целлюлозу, то наблюдается растворение целлюлозы и образуется раствор медноаммиачного комплекса целлюлозы.

Из этого раствора можно изготовить медноаммиачные волокна, которые находят применение при производстве бельевого трикотажа и различных тканей. Нахождение в природе: в земной коре содержание меди составляет около 5·10–3% по массе. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит, или медный колчедан, CuFeS2 (30% меди), ковеллин CuS (64,4% меди), халькозин, или медный блеск, Cu2S (79,8% меди), борнит Cu5FeS4 (52-65% меди). Существует также много и оксидных руд меди, например: куприт Cu2O, (81,8% меди), малахит CuCO3·Cu(OH)2 (57,4% меди) и другие. Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах. Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо (Fe), цинк (Z ), свинец (Pb), и другие металлы. Как примеси медные руды обычно содержат рассеянные элементы (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото. Для промышленных разработок используют руды, в которых содержание меди составляет немногим более 1 % по массе, а то и менее. В морской воде содержится примерно 1·10–8 % меди. Получение: промышленное получение меди — сложный многоступенчатый процесс. Добытую руду дробят, а для отделения пустой породы используют, как правило, флотационный метод обогащения. Полученный концентрат (содержит 18-45% меди по массе) подвергают обжигу в печи с воздушным дутьем. В результате обжига образуется огарок - твердое вещество, содержащее, кроме меди, также и примеси других металлов. Огарок плавят в отражательных печах или электропечах. После этой плавки, кроме шлака, образуется так называемый штейн, в котором содержание меди составляет до 40-50%. Далее штейн подвергают конвертированию — через расплавленный штейн продувают сжатый воздух, обогащенный кислородом. В штейн добавляют кварцевый флюс (песок SiO2). В процессе конвертирования содержащийся в штейне как нежелательная примесь сульфид железа FeS переходит в шлак и выделяется в виде сернистого газа SO2: 2FeS 3O2 2SiO2 = 2FeSiO3 2SO2 Одновременно сульфид меди (I) Cu2S окисляется: 2Cu2S 3О2 = 2Cu2О 2SO2 Образовавшийся на этой стадии Cu2О далее реагирует с Cu2S: 2Cu2О Cu2S = 6Cu SО2 В результате возникает так называемая черновая медь, в которой содержание самой меди составляет уже 98,5-99,3% по массе. Далее черновую медь подвергают рафинированию. Рафинирование на первой стадии — огневое, оно заключается в том, что черновую медь расплавляют и через расплав пропускают кислород. Примеси более активных металлов, содержащихся в черновой меди, активно реагируют с кислородом и переходят в оксидные шлаки. На заключительной стадии медь подвергают электрохимическому рафинированию в сернокислом растворе, при этом черновая медь служит анодом, а очищенная медь выделяется на катоде.

РЯБИНОВАЯ Набрать самой зрелой рябины, испечь ее на досках так, чтобы она была только мягкая, но не сухая, а главное, чтобы никак не пригорела. На 2/3 засыпать бутыль, долить водкой. Настойка должна стоять пока не сделается темно-янтарного цвета, тогда слить и подсластить, полагая 200 до 400 г сахара на бутылку. ИЗ СКОРЛУПЫ ГРЕЦКИХ ОРЕХОВ Расколоть грецкие орехи, вынуть съедобную мякоть, которые употребить на что другое, скорлупу же и, главное, несъедобные перегородки - всыпать в бутыль, наполняя ее до 2/3, налить полную водкой. Через 2-3 месяца подсластить. ИЗ МОРОШКИ Готовить так же, как ягодные. Вкус напоминает старое венгерское вино. Готовую настойку из морошки пропустить сквозь натолченные сухари черного хлеба. ВИШНЯК НА МЕДУ Это очень вкусная и здоровая наливка, приготовляется следующим образом: выбрать хороший и плотный бочонок, окованный 4 железными обручами. Вишня должна быть зрелой и чистой, без веточек и листьев. Насыпать вишень так, чтобы пустого места оставалось 1/10 от высоты бочонка. На вишни налить меду из ульев сырого и чистого, без всякой примесей и без воска, лучше светлых цветов, чем темных

1. Хаос, герменевтика, журналістика, або Світоглядницькі засади творчості у мас-медіа

2. Медиа-империя Владимира Гусинского

3. Осаждение двойного покрытия медь-никель

4. Медь

5. Геохимия меди

6. Химия меди
7. Матожидание, дисперсия, мода и медиана
8. Мед

9. Медь в организме человека

10. Лекции - Фармакология (справочник мед. препаратов зарубежного производства)

11. Полярографическое определение цинка в присутствии меди

12. Две стороны медали под названием «стресс»

13. Медиа-микс и их варианты

14. Коррозия меди в 5М изопропанольных растворах НС1

15. Медь

16. Шпаргалки по мед. экологии

Шкатулка для ювелирных украшений, 20x13x11 см, арт. 88253.
Шкатулка сохранит ваши ювелирные изделия в первозданном виде. С ней вы сможете внести в интерьер частичку элегантности. Беречь от
363 руб
Раздел: Шкатулки для украшений
Чековая книжка желаний "Для Неё".
Этим подарком женщина обещает исполнить несколько заветных желаний мужчины по его выбору. В каждой книжке содержится 12 листов с
390 руб
Раздел: Прочее
Чехол для гладильной доски, 50х140 см.
Синтетический материал с металлизированной нитью.
308 руб
Раздел: Чехлы для гладильной доски

17. Мед

18. Действие ионов цинка и меди на некоторых гидроидов в лабораторных условиях

19. Медь и её природные соединения, синтез малахита

20. Юридическая экспертиза сделки: две стороны медали

21. Образ Медеи в трагедии Еврепида

22. Биологические ритмы меди в растениях
23. Растения-медоносы. Извлечение меда из сот
24. Медогонки, фильтры, емкости для меда

25. Українська мова у медіапросторі

26. Автоматизация разработки медиаплана для ООО "Медиа-Групп"

27. Органолептические методы исследования меда

28. Ставные меда

29. Саморефлексия медиа в фильмах ужасов 1990-х годов

30. Совершенствование системы управления лояльностью потребителей ООО "ДИНА-МЕД"

31. Мед - лучшее лекарство

32. Анализ свариваемости сплавов на основе меди (М1)

Папка для рисунков и нот, на молнии "Ласпи", А2.
Главное назначение — хранение и перемещение не только рисунков, чертежей, эскизов и т.д. (до формата А2), но прочих материалов,
804 руб
Раздел: Папки для акварелей, рисования
Мотоцикл-каталка Pilsan "Mini Moto" (цвет: красный, с музыкой).
Каталка от компании Pilsan, выполненная в виде красного мотоцикла, может понравиться энергичным и активным детям в возрасте от трех лет.
2183 руб
Раздел: Каталки
Карандаши цветные BIC "Evolution", 18 цветов.
Цветные карандаши произведены без использования дерева. Ударопрочный стержень - не расщепляется при механическом воздействии. Безопасные -
388 руб
Раздел: 13-24 цвета

33. Железоуглеродистые сплавы. Медь и ее сплавы

34. Травление меди с пробельных мест. Химическая и электрохимическая металлизация

35. Особенности каталитического влияния меди на фазовый переход от BNк к BNг

36. Закономерности процесса формования электродов на основе оксида меди и влияние параметров процесса на эксплуатационные характеристики литиевых источников тока

37. Определение ионов алюминия и меди (II) в сточной воде

38. Сорбируемость меди на бурых углях, сапропелях и выделенных из них гуминовых кислотах


Поиск Рефератов на сайте za4eti.ru Вы студент, и у Вас нет времени на выполнение письменных работ (рефератов, курсовых и дипломов)? Мы сможем Вам в этом помочь. Возможно, Вам подойдет что-то из ПЕРЕЧНЯ ПРЕДМЕТОВ И ДИСЦИПЛИН, ПО КОТОРЫМ ВЫПОЛНЯЮТСЯ РЕФЕРАТЫ, КУРСОВЫЕ И ДИПЛОМНЫЕ РАБОТЫ. 
Вы можете поискать нужную Вам работу в КОЛЛЕКЦИИ ГОТОВЫХ РЕФЕРАТОВ, КУРСОВЫХ И ДИПЛОМНЫХ РАБОТ, выполненных преподавателями московских ВУЗов за период более чем 10-летней работы. Эти работы Вы можете бесплатно СКАЧАТЬ.